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ABSTRACT

Radioactive source signal measurements are Poisson distributed due to the un-

derlying radiation process. This fact, coupled with the ubiquitous normally occurring

radioactive materials (NORM), makes it challenging to localize or track a radioactive

source or target accurately. This leads to the necessity to either use highly accurate

sensors to minimize measurement noise or many less accurate sensors whose measure-

ments are averaged to minimize the noise. The cost associated with highly accurate

sensors places a bound on the number that can realistically be deployed. Similarly,

the degree of inaccuracy in cheap sensors also places a lower bound on the number of

sensors needed to achieve realistic estimates of location or trajectory of a radioactive

source in order to achieve reasonable error margins.

We first consider the use of the smallest number of highly accurate sensors to

localize radioactive sources. The novel ideas and algorithms we develop use no more

than the minimum number of sensors required by triangulation based algorithms but

avoid all the pitfalls manifest with triangulation based algorithms such as multiple

local minima and slow convergence rate from algorithm reinitialization. Under the

general assumption that we have a priori knowledge of the statistics of the intensity of

the source, we show that if the source or target is known to be in one open half plane,

then N sensors are enough to guarantee a unique solution, N being the dimension of

the search space. If the assumptions are tightened such that the source or target lies

in the open convex hull of the sensors, then N + 1 sensors are required. Suppose we

v
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do not have knowledge of the statistics of the intensity of the source, we show that

N + 1 sensors is still the minimum number of sensors required to guarantee a unique

solution if the source is in the open convex hull of the sensors.

Second, we present tracking of a radioactive source using cheap low sensitivity

binary proximity sensors under some general assumptions. Suppose a source or tar-

get moves in a straight line, and suppose we have a priori knowledge of the radiation

intensity of the source, we show that three binary sensors and their binary measure-

ments depicting the presence or absence of a source within their nominal sensing

range suffices to localize the linear trajectory. If we do not have knowledge of the

intensity of the source or target, then a minimum of four sensors suffices to localize

the trajectory of the source.

Finally we present some fundamental limits on the estimation accuracy of a

stationary radioactive source using ideal mobile measurement sensors and provide a

robust algorithm which achieves the estimation accuracy bounds asymptotically as

the expected radiation count increases.

vi
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PUBLIC ABSTRACT

The purpose of this research is to study and develop robust algorithms for

detection, estimation, localization and tracking of radioactive materials. Unlike other

signal propagation models, the recorded signals from a radioactive source or target

is itself stochastic, even in the absence of any background or propagation channel

noise. This is due to the number of radioactive particles leaving the source or target

following a Poisson process. The measurement at the sensors also follow a Poisson

arrival process. These facts make detection, estimation, localization and tracking of

radioactive materials highly challenging.

The research in this thesis presents novel approaches to detection, estimation,

localization and tracking of radioactive materials . First, we show, under some gen-

eral assumptions on the placement of measurement sensors, that a minimum number

of highly accurate sensors will yield a unique solution for the location of the source

or target. Our approach is superior to conventional triangulation based algorithms in

the sense that it avoids the problem of multiple local minima and persistent reinitial-

ization while utilizing no more than the number of sensors required for triangulation.

We also present results on tracking of a mobile source or target on a linear trajec-

tory using cheap binary proximity sensors. We show that three generically placed

cheap binary proximity sensors suffice to localize a linear trajectory if we have a pri-

ori knowledge of the statistics of the radiation source intensity . In the absence of

knowledge of the radiation source intensity , four generically placed sensors suffice.

vii
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Finally, we explore the fundamental limits of estimating the location and radiation

intensity of a source or target using a single mobile ideal detector moving on a straight

line with uniform speed. We show that the maximum likelihood estimate achieves

the fundamental accuracy limit asymptotically as the total radiation count at the

receiver increases.

Our results are relevant in the effort for proactive protection against nuclear

and radiological threats of public events and areas. Currently, there does not exist

a reliable and efficient system to detect the presence of nuclear or radioactive mate-

rials in a relatively large area. What is needed is a system integrating nuclear and

radioactive material detection and localization of weak and possibly shielded radioac-

tive materials so that public and law enforcement officials can respond accordingly

to the situation in a timely manner. Our algorithms and results are a major step in

this direction.

viii
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1

CHAPTER 1
INTRODUCTION

1.1 Motivation

We are interested in estimation and tracking of radioactive sources using a

network of radiation sensors. Source estimation and tracking are classical problems in

fields such as wireless communication and navigation. Radioactive sources, however,

present a unique challenge in terms of uncertainties and the detection or estimation

process. Our research interest is in developing novel ideas and algorithms to deal

with this challenge.

1.2 Background

Over the years, the problem of localizing and tracking of radioactive sources

has become an area of intense research due to its obvious implications to security and

public safety[1, 2, 3, 4, 5, 6]. Fundamentally, these problems involve estimation of

the position and trajectory of objects of interest using the observations of a network

of sensors, [7, 8]. With projections estimating that 80% of the population will reside

within city limits by 2025 in the USA [9], there is an expected astronomical increase

in the effects of any radioactive material leakage within city limits. Timely estimation

and tracking of radioactive sources is thus critical to forestall any future catastrophe

in this regard. The technical challenges of this problem are compounded by the fact

that nuclear materials vary widely in their concentrations and compositions [6], and

are often concealed by shielding material, and submerged in ever present background
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radiation that varies widely in strength and spectrum over time and space [10]. Like-

wise, there are also many types of detectors [11] and sensors used in practical tracking

systems, and these too vary widely in their quality and sensitivity.

The accuracy of radioactive source estimation or tracking relies on the received

signal strength at the sensor from the target [12]. This in turn depends on proximity

of the sensor to their target. This proximity requirement is especially stringent for

sensing applications where signal absorption by the medium is large. For example,

the strength of gamma rays emanated by a radioactive source, in the presence of

structures that act as shielding material [13], exponentially decline with distance. In

such a setting a wide coverage area requires a network of many sensors. Deploying

expensive sensors, in such instances, become cost prohibitive.

Many existing studies for estimation of radioactive sources rely on using a large

number of low-cost radiation sensors [9]. These techniques perform poorly when the

number of sensors is reduced to the barest minimum. This is because the averaging

effect of the large number of sensors is lost. Other studies which use the fewest number

of expensive sensors have the problem of false minima which increase computational

time of their algorithms. Our approach, using fewest number of expensive sensors,

avoids the pitfalls of false minima and long computation time. We describe our novel

approaches to estimation of radioactive sources in details in Chapter 2 using the

minimum number of sensors under some general assumptions. We first deal with the

case where we have an idea of the volume, shape and size of the radioactive. Then

we consider the case where the volume, shape and size of the radioactive is unknown.
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Similarly, many of the existing studies on tracking of radioactive sources rely

on the density of the sensors being large enough to essentially guarantee blanket

coverage of the region of interest [14, 15]. The idea is that if the density is high

enough, every movement of the object lies in the sensing range of several sensors

and the object’s position and trajectory can be pinned down with a higher degree of

accuracy because the intersection of sensing ranges of multiple sensors is much smaller

than the sensing area of any single sensor. Clearly, a higher density implies that the

sensing ranges of more sensors intersect which results in a smaller intersecting area

or a more accurate estimate. In fact, as shown in [14] the estimation accuracy is of

the order 1/ρ, where ρ is the sensor density, if each sensor has a fixed sensing range.

Instead of a blanket coverage of the region of interest for tracking, we consider

a unique approach in Chapter 3. The sensors we consider are cheap binary proximity

sensors, that can only detect if an object is in their sensing radius. Effectively, this

is a case of one-bit signal quantization. Each sensor can only record instances at

which a moving object enters or leaves its sensing range. Such sensors represent

a convenient and powerful abstraction for a variety of physical sensors, and have

been widely studied in the literature on localization and tracking [16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 14, 15]. One type of binary sensor network tries to use the

geometry of the network [16] and considers the network as a connected graph to aid

detection. The work in [20] considers heterogeneous binary sensors with different

performance and cost. The purpose is to analyze the best proportion of sensors

in each class to tradeoff performance with cost. Some assume probabilistic models
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for object movement and/or for the received signal strength [18, 19, 21, 23, 24] and

develop detection algorithms based on these models. Others additionally assume that

each sensor has the ability to sense if the object is approaching or moving away [16].

We consider two approaches in Chapter 3. First we assume that we have an idea

of the volume, shape and size of the radioactive source. This translates to having

knowledge of some nominal radius from the measurement sensor within which the

source can be detected. We then consider the case where the characteristics of the

source is unknown. We still use binary sensors that can only detect if an object is in

their unknown but fixed nominal sensing radius.

Finally, in Chapter 4, we consider the achievable error bounds on estimation

of weak radioactive sources using a cheap mobile measurement sensor. We develop

bounds for an ideal mobile measurement sensor over an infinite time horizon and

generalize it for the finite horizon case. We develop an efficient algorithm which

attains the Cramer-Rao bounds asymptotically as the expectation of the received

signal strength grows.

1.3 Challenges in detecting, estimating and tracking radioactive sources

There are several challenges that underlie the detection, estimation and track-

ing of radioactive materials. To set the stage, let us first understand how such detec-

tion is effected. The principal instruments used are Geiger counters that record the

radiation count per second. The signal model for this count at a sensor i is:

si = Poisson

(
Ae−αdi

d2
i

)
+ Poisson(wi) (1.1)
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where si is the received signal at the ith sensor, di the distance between the source and

the ith sensor, α is the attenuation coefficient and depends on the shielding material’s

density and the absorption of the propagation channel. The attenuation coefficients

are known and available in public domain for various common shielding materials [6].

A is the expectation of the signal strength at a unit distance, zero shielding coefficient

and no background noise whilst wi is the expectation of the background noise at the

ith sensor.

First, background radiation generated by NORM, the wi which is modeled as

a Poisson random variable, is large. There is also substantial uncertainty in Ae−αdi
d2i

,

which too is modeled as a Poisson random variable. Similar uncertainty manifests

in α. Consequently, accurate localization is a particular challenge. Large accurate

sensors are expensive. Given that they must often be deployed in crowded public

places, one is confronted with one of two alternatives. Either deploy a few expensive

sensors, or use a network of cheap sensors. Indeed this thesis addresses two com-

plementary problems: How to accurately localize with the fewest possible expensive

sensors? How to track a mobile source using a network of cheap sensors? By cheap

sensors we mean sensors that are only capable of detecting whether a source is in

their sensing range,and will be referred to as binary sensors. We also consider the

fundamental limits to the estimation accuracy of possibly weak sources using ideal

mobile sensors.
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1.4 Deploying fewest possible sensors for radioactive source estimation

Referring to (1.1), the signal strength si in principle provides a measure of

distance. In N -dimensions, distances between the source and N + 1 sensors that

avoid an N -dimensional hyperplane theoretically suffice to localize. Indeed linear

triangulation algorithms can be used to effect such localization.

As argued in [26], accurate source estimation is a fundamentally nonlinear

problem. Accordingly, papers like [26] cast it as a non-convex optimization prob-

lem, involving cost functions manifested with multiple local minima. This causes

algorithms such as gradient descent optimization to potentially get captured by local

minima. The repeated reinitialization this requires impedes time critical localization.

A related issue is the number of sensors that can be deployed. Accurate sensors for

detecting radioactive materials are expensive. Thus it is highly desirable to deploy

as few sensors as is possible.

Motivated by these considerations, in Chapter 2 we consider localization of

radioactive sources using the fewest sensors under some assumptions, and propose

novel approaches that while involving non-convex minimization avoids the pitfalls of

convergence to local minima. First, a feasible assumption is made that the source lies

in the open convex hull of N + 1 sensors in RN , N ∈ {2, 3}. Here we assume that A

in (1.1) is known. We then consider a situation where we can use precisely N sensors

in RN , N ∈ {2, 3} by relaxing the assumption of the source in the open convex hull

of the measurement sensors. Here we consider that the centers of the N sensors in

RN , N ∈ {2, 3} define a separating N − 1 dimensional hyperplane which separates
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the domain into two open half planes. Suppose that we know which open half plane

contains the source, then precisely N sensors in RN , N ∈ {2, 3} suffice to localize the

source if the orthonormal projection of the source unto the separating hyperplane

lies in the convex hull of the measurement sensors. Here again we assume that A in

(1.1) is known. We finally consider the case where A in (1.1) is unknown. We show

that using precisely N + 1 sensors in RN , N ∈ {2, 3}, the source can be uniquely

determined under the assumption that the source is in the open convex hull of the

sensors. In all these scenarios, our main motivation is using the minimum number of

sensors, and our approaches rely on using precisely the minimum number of sensors

required.

1.5 Tracking of radioactive sources with binary sensors

We consider the tracking of radioactive sources moving on piece-wise linear

trajectories with constant speed through a field of cheap binary proximity sensors

with “on” and “off” time stamps indicating the source entering and leaving a sensors

range respectively. The assumption of piece-wise linear trajectories is reasonable and

practical since radioactive sources are carried by persons or vehicles whose movement

are well approximated by piece-wise linear joins over short intervals. The assumption

of constant speed is also reasonable because over short intervals a person or a vehicle

does not change speed drastically. We only require a constant speed spanning the

number of sensors used for estimating a segment of the piecewise linear trajectory

being tracked.
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Consider a non stationary radioactive source instantaneously located at y∗ ∈

R2, and binary proximity sensors located at xi ∈ R2, i ∈ {1, ..., n}. Define di =

‖xi−y∗‖ where ‖·‖ denotes the 2-norm. The ith sensor, which can be a portable or non-

portable gamma-ray spectrometer [6, 5], produces an indicator signal Ii, dependent

on the total gamma-ray counts received:

Ii =


1, if Poisson

(
Ae−αdi
d2i

+ wi

)
≥ Td

0, if Poisson
(
Ae−αdi
d2i

+ wi

)
< Td

(1.2)

where Ai, α, wi and di are as defined in (1.1), Td is a predetermined threshold above the

expectation of the background noise to trigger sensor measurements. The transitions

0-1 and 1-0 define the “on” and “off” times of the binary proximity sensor. We are

interested in the following; suppose we have “on” and “off”’ time stamps from a

number of sensors, indicating that a source entered and left their sensing ranges, and

suppose we are given the centers of the location of the sensors, can we estimate the

trajectory of the source uniquely?

In Chapter 3, we first assume that we know the “noise free” nominal sensing

range required to trigger the sensor. Here we define “noise free” as the expectation

of (1.1) in the absence of NORM. Knowledge of the nominal sensing range inherently

assumes that we have knowledge of A or the characteristics of the source. We devise a

linear approach to estimate each piece of the piece-wise linear trajectory and present

analysis of the performance in the presence of noise. Second, we tackle the case where

we do not know A or the characteristics of the source. We formulate an algorithm to

estimate the piece-wise linear trajectory and analyze the performance in the presence
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of noise.

1.6 Performance bounds on localization with cheap mobile sensors

We consider the achievable limits on estimation of a possibly weak stationary

radioactive source using ideal measurement sensors in Chapter 4. We consider an

ideal mobile detector making perfect, noiseless measurements and formulate a general

problem of maximum likelihood estimation of a radioactive using such measurements.

For the case of a stationary source and a mobile detector moving with constant

velocity, we derive closed form solutions to the maximum likelihood estimate as well

as the corresponding Cramer-Rao bounds. We present simulations showing that the

maximum likelihood estimate achieves the Cramer-Rao bounds asymptotically.

1.7 Main contributions

Our main contributions are summarized as follows:

Estimation of radioactive sources with the minimum number of sensors:

We consider a class of natural, non-convex cost functions, applicable to general ob-

servation models under some general assumptions.

First we assume that we know A and the source is in the open convex hull

of the sensors. The assumption of the source in the open convex hull can be easily

satisfied following a crude initial detection. Under these conditions, we show that

when the number of sensors is precisely N + 1, N ∈ {2, 3}-dimensional space, the

gradient descent minimization of such cost functions has no false stationary points

inside the convex hull of the sensors.
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Then we assume that we again know A but the source is in an open half plane

separated by an N − 1 dimensional hyperplane that contains the known centers of

N radiation sensors. The assumption of the source in an open half plane can also

be easily satisfied following a crude initial detection. Under these conditions, we

show that when the number of sensors is precisely N , N ∈ {2, 3}-dimensional space,

the gradient descent minimization of such cost functions with projections has no false

stationary points inside the domain of all points whose projection unto the separating

hyperplane lie in the convex hull of the N sensors.

Finally, we consider the case where we have no idea of A. We however assume

that the source is in the open convex hull of the sensors. The assumption of the source

in the open convex hull can be easily satisfied following a crude initial detection.

Under these conditions, we show that when the number of sensors is precisely N +

1, N ∈ {2, 3}-dimensional space, the gradient descent minimization of such cost

functions has no false stationary points inside the convex hull of the sensors. Note

that the number of radiation sensors is the same as that for the known A.

Tracking of radioactive sources using binary proximity sensors:

We consider a moving target in a field of binary proximity sensors with “on” and

“off” timestamps correlating to the source entering and leaving the sensing range of

a sensor and assume that (1) the source is moving with a constant speed and (2)

the source trajectory is well approximated by piecewise linear joins. Under these

two conditions, we show that with probability 1, a minimum of 3 and 4 sensors are

sufficient to track the a segment of the piece-wise linear trajectory of the source for the
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known and unknown nominal sensing ranges of the measurement sensors respectively.

First we consider the case where we know the nominal sensing range, meaning

we know A. We show that this problem can be converted into a linear parameter

estimation. Our approach works even with arbitrarily small sensor densities. Second,

we consider the case where we do not know the nominal sensing range. We develop

a non-convex function and use a Newton based algorithmic approach to estimate the

trajectory of the radioactive source.

Performance bounds on estimation accuracy of radioactive sources: We

consider a moving ideal measurement sensor and a stationary radioactive source and

derive the performance accuracy bounds on source estimation. We show that the

maximum likelihood estimate achieves the bound for the infinite time horizon case.

We generalize our results for the finite horizon case.

1.8 Organization

The rest of this thesis is organized as follows. Chapter 2 describe the localiza-

tion of radioactive sources using the minimum number of sources under some general

assumptions. Chapter 3 describes the tracking of radioactive sources using binary

proximity sensors with known and unknown nominal sensing ranges. Chapter 4 de-

scribes the achievable performance bounds of estimation of possibly weak radioactive

sources using cheap mobile sensors. Chapter 5 describes possible future work and

concludes.
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CHAPTER 2
ESTIMATION OF RADIOACTIVE SOURCES USING THE LEAST

NUMBER OF SENSORS

2.1 Introduction

In this chapter, we provide novel approaches to estimating radioactive sources

using the minimum number of sensors under some general assumptions. Though

the results are motivated by the radioactive sources and their estimation, the signal

models used are in fact quite general and apply to a broader class of non-convex

optimization. In particular, consider a source located at y∗ ∈ RN , N ∈ {2, 3}, and n

sensors located at xi ∈ RN , i ∈ {1, ..., n}. Define

di = ‖xi − y∗‖ (2.1)

where ‖ · ‖ denotes the 2-norm. The received signal strength (RSS) at the ith sensor

is:

si ∼ Poisson

(
λi =

Ae−αdi

d2
i

)
+ wi (2.2)

In principle knowledge of A and α, and the si measurements provide a noisy

estimate of di; N + 1 such distances from non-collinear xi, when N = 2, and non-

coplanar xi, when N = 3, suffice to estimate y∗. Indeed there are simple linear

triangulation algorithms that permit localization from distances, [27].

However, the following compelling example shows the pitfalls that accompany

such algorithms: x1 = [0, 0]>, x2 = [43, 7]>, x3 = [47, 0]> and y∗ = [18,−29]>.

The true distances are: d1 = 34, d2 = 43 and d3 = 41. Now, suppose α = 0 and
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the measured distances are respectively, 35, 42 and 43. The linear triangulation

algorithm of [27] yields: y = [16.9,−6.5]>. Observe, the dramatic inaccuracy in the

second element despite the modest errors in the measured distances. As noted in

[26], the difficulty lies in the fact that source estimation is a fundamentally nonlinear

problem. Figure 2.1 illustrates graphically the behavior in this example.
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Figure 2.1: Illustration of non robustness of triangulation

We propose alternative gradient descent minimizations of the non-convex cost

function, (2.2). Standard stability theory, [28, 29] shows that should the gradient

descent minimization of such a cost function be uniformly convergent under the ideal
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conditions of perfectly known A and zero noise, then the algorithm will be robust to

uncertainties in the A and noise. Our approaches all avoid false stationary points.

2.2 Summary of our contributions

We consider a natural, non-convex cost function of (2.2), and assume that:

1. The source strength A is known and the source is in the convex hull of the

sensors. We show that when the number of sensors is preciselyN+1, N ∈ {2, 3}-

dimensional space, (2.6) under mild assumptions gives a corresponding gradient

descent algorithm which converges uniformly to a stationary point, false or

otherwise. We also derive the main result under very general conditions, and

discuss its implications. We argue that the gradient descent algorithm with

random projections, if needed, will uniformly converge in probability.

2. The source strength A is known and the orthonormal projection of the source

unto a separating hyperplane containing all the measurement sensors is in the

convex hull of the measurement sensors which avoid an N − 1-dimensional hy-

perplane. We show that when the number of sensors is precisely N , N ∈ {2, 3}-

dimensional space, (2.6) under mild assumptions gives a corresponding gradi-

ent descent algorithm which converges uniformly to a stationary point, false or

otherwise. We also derive the main result under very general conditions, and

discuss its implications. We argue that the gradient descent algorithm with

random projections, if needed, will uniformly converge in probability.

3. The source strength A is unknown and the source is in the convex hull of the
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sensors. We show that when the number of sensors is preciselyN+1, N ∈ {2, 3}-

dimensional space, (2.6) under mild assumptions gives a corresponding gradient

descent algorithm which converges uniformly to a stationary point, false or

otherwise. We also derive the main result under very general conditions, and

discuss its implications. We argue that the gradient descent algorithm with

random projections, if needed, will uniformly converge in probability.

2.3 Estimation of known radioactive sources using precisely N + 1

sensors

Consider arbitrary N ≥ 2 and a fairly general observation model that in the

noise free case obeys

zi = g(di) (2.3)

with di as in (2.1). In the sequel, the g(·) will satisfy the following assumption.

Assumption 2.3.1. For d > 0, i ∈ {1, · · · , n}, g(d) is strictly decreasing and ana-

lytic. Further for every ρ1, ρ2 > 0, there exists M(ρ1, ρ2) such that the g(di) and their

first two derivatives are all bounded in magnitude by M(ρ1, ρ2) whenever ρ1 ≤ d ≤ ρ2.

It is readily seen that with A,α > 0, both

g(di) =
Ae−αdi

d2
i

⇒ ∂g(di)

∂di
= −g(di)

(
α +

2

di

)
(2.4)

and

g(di) = lnA− αdi − 2 ln di ⇒
∂g(di)

∂di
= −

(
α +

2

di

)
(2.5)

obey Assumption 2.3.1, as does the standard RSS model where α = 0. Observe the

right hand side of (2.5) is just the logarithm of the right side of (2.4).
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Now consider the cost function:

J(y) =
n∑
i=1

(zi − g(‖y − xi‖))2 . (2.6)

Suppose the xi ∈ RN avoid an (N−1)-dimensional hyperplane. Then clearly the only

global minimum of (2.6) is y = y∗. Consequently, the gradient descent minimization of

(2.6) is a candidate localization algorithm. Specifically, with y[k] the current estimate

of y∗, and sufficiently small µ > 0, such an algorithm will proceed as:

y[k + 1] = y[k]− µ ∂J(y)

∂y

∣∣∣∣
y=y[k]

∀k ≥ k0. (2.7)

For either (2.4) or (2.5) the knowledge of the A, α and zi ensures that (2.7) is imple-

mentable. Indeed define g′(·) as the derivative of g(·). Observe:

∂J(y)

∂y
= 2

n∑
i=1

(zi − g(‖y − xi‖)) g′(‖y − xi‖)(xi − y)

‖y − xi‖
. (2.8)

We also note that with g(·) as in (2.4) the estimate minimizing (2.6) would be the

maximum likelihood estimate, if wi in (2.2) were Gaussian. Though in practice it

is modeled as poisson, high variance poisson distributions are well approximated by

Gaussian ones. In the event we have the following Theorem.

Theorem 2.1. Consider (2.7) under (2.3), (2.6) and Assumption 2.3.1. Suppose

neither y∗ nor y[k0] are coincident with any of the xi. Then for every such pair of

y[k0] and y∗, there exists a µ∗(y∗, y[k0]) such that for all 0 < µ ≤ µ∗, the following

hold:

(A) For all k ≥ k0 J (y[k]) ≤ J (y[k0]) .
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(B) The following occurs uniformly in the initial time k0:

lim
k→∞

∂J(y)

∂y

∣∣∣∣
y=y[k]

= 0. (2.9)

Further, suppose there exist a k1 ≥ k0 and a compact set S ⊂ RN containing y∗, with

boundary ∂S, having the following properties: (I) When y ∈ S \ ∂S

∂J(y)

∂y
= 0⇔ J(y) = 0. (2.10)

(II)

J(y[k1]) < min
y∈∂S

J(y) and y[k1] ∈ {S \ ∂S}.

Then the following holds uniformly in k1

lim
k→∞

J(y[k]) = 0. (2.11)

Proof. First observe that as neither y∗ nor y[k0] are coincident with any of the xi,

because of Assumption 2.3.1, for some finite K > 0, J(y[k0]) = K. Consider the

compact set J (K) =
{
y ∈ RN |J(y) ≤ K

}
. Because of (2.6) and Assumption 2.3.1

there exists an M1 > 0 such that all first and second order derivatives of J(y) with

respect to the elements of y are bounded by M1 for all y ∈ J (K). Thus, as because

from (2.7),

‖y[k + 1]− y[k]‖ ≤ µ

∥∥∥∥∥ ∂J(y)

∂y

∣∣∣∣
y=y[k]

∥∥∥∥∥ , (2.12)

there exists a µ1 and an M2 such that for all y[k] ∈ J (K), and 0 < µ < µ1, the first

and second order derivatives of J(y) on the line segment joining y[k] and y[k + 1]

are bounded by M2. From the multivariable Taylor’s Theorem there thus exists an



www.manaraa.com

18

M3(µ), determined by M2 and µ for which:

J (y[k + 1]) = J

(
y[k]− µ ∂J(y)

∂y

∣∣∣
y=y[k]

)
≤ J (y[k])− µ

∥∥∥∥ ∂J(y)
∂y

∣∣∣
y=y[k]

∥∥∥∥2

(1− µ2M3(µ)).

In particular,

lim
µ→0

M3(µ) = 0.

Thus, for any y[k] ∈ J (K), there exists a µ2 depending on K, and an 0 < ε < 1

such that for all 0 < µ < µ2, µM3 < 1 − ε. For any such µ, this in turn ensures

that whenever y[k] ∈ J (K), J(y[k + 1]) ≤ J(y[k]), proving (A) through an obvious

induction. Further with any such µ, and ε as defined there holds:

J (y[k + 1]) ≤ J (y[k])− (1− ε)

∥∥∥∥∥ ∂J(y)

∂y

∣∣∣∣
y=y[k]

∥∥∥∥∥
2

.

As J(·) is nonnegative, standard arguments prove (2.9). Uniformity in k0 follows by

the lack of explicit dependence in (2.7) on k. Finally under (II), because of (A), for

all k ≥ k1, y[k] ∈ {S \ ∂S}. Then (2.11) occurs because of (I), (2.9), y∗ ∈ S and

J(y∗) = 0.

Remark 2.1. This theorem holds even if we replace the strict decreasing requirement

on all the g(.) by a strict increasing requirement on all of them.

We note that any value of y for which the gradient is zero is a stationary point

of (2.7). It is a false stationary point if this y does not equal y∗. Figure 2.2 illustrates

graphically the convergence to false stationary points for our cost function.
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Figure 2.2: Illustration of false stationary points

If the xi do not lie on an (N−1)-dimensional hyperplane, uniform convergence

of y[k] to y∗ then simply requires that (I) and (II) hold for some k1. The next section

explores how to ensure this.

2.3.1 The main result

We now make two further assumptions.

Assumption 2.3.2. The number of sensors n, precisely equals N+1 and the sensors

located at xi ∈ RN do not lie on an (N − 1)-dimensional hyperplane.

Recall this is the minimum number of sensors needed to achieve localization

from the zi in (2.3). The second assumption below is eminently sensible. It presumes



www.manaraa.com

20

that a very crude detection of the source has occurred and the sensors have been placed

so that the source is in their convex hull. In the sequel the notation, co{x1, · · · , xN+1}

denotes the open convex hull of the xi.

Assumption 2.3.3. The source location y∗ ∈ RN is in co{x1, · · · , xN+1}.

Before presenting our main result, we first provide a Lemma.

Lemma 2.2. Under assumptions 2.3.2 and 2.3.3 suppose y ∈ RN obeys: (a) y 6= y∗

and (b) y ∈ co{x1, · · · , xN+1}. Then there exist i, j ∈ {1, · · · , N + 1} such that:

‖xi − y‖ < ‖xi − y∗‖, and ‖xj − y‖ > ‖xj − y∗‖.

Proof. As y 6= y∗, there exists an (N−1)-dimensional hyperplaneH that separates RN

into two open half planes, H and H∗, such that H =
{
η ∈ RN |‖η − y‖ < ‖η − y∗‖

}
and H∗ =

{
η ∈ RN |‖η − y‖ > ‖η − y∗‖

}
.

Further, H =
{
η ∈ RN |‖η − y‖ = ‖η − y∗‖

}
. For the Lemma to be false either for

all i ∈ {1, · · · , N + 1}

xi ∈ H∗
⋃

H (2.13)

or for all i ∈ {1, · · · , N + 1}

xi ∈ H
⋃

H. (2.14)

By the separating hyperplane theorem in case of (2.13), y /∈ co{x1, · · · , xN+1} and in

case of (2.14), y∗ /∈ co{x1, · · · , xN+1}. The contradiction proves the result.

We now present our main result that shows that should the source lie in the

open convex hull of the sensors, and should there be precisely the minimum number
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of sensors required for localization, then the open convex hull of the sensors is bereft

of false stationary points.

Theorem 2.3. Consider (2.6) under assumptions 2.3.1, 2.3.2 and 2.3.3. Consider

y ∈ co{x1, · · · , xN+1}. Then there holds:

∂J(y)

∂y
= 0⇔ J(y) = 0.

Proof. Since y ∈ co{x1, · · · , xN+1}, there exist βi > 0, such that

N+1∑
i=1

βi = 1 (2.15)

and
N+1∑
i=1

βixi = y. (2.16)

From (2.15) and (2.16) we obtain:

N+1∑
i=1

βixi =

(
N+1∑
i=1

βi

)
y ⇔

N+1∑
i=1

βi(xi − y) = 0.

In other words β = [β1, · · · , βN+1]> is in the right nullspace of the matrix: X (y) =[
x1 − y · · · xN+1 − y

]
. As the xi do not lie on an (N − 1)-dimensional hyperplane

X (y) has rank N for all y ∈ RN . Thus its nullspace has dimension 1, and as βi > 0, all

its non-zero null vectors have elements that are either all positive, or are all negative.

Now suppose

∂J(y)

∂y
= 0. (2.17)

Define:

ξi =
(g(‖y∗ − xi‖)− g(‖y − xi‖)) g′(‖y − xi‖)

‖y − xi‖
(2.18)
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From (2.8), ξ = [ξ1, · · · , ξN+1]> is in the null space of X (y). Now suppose ξ 6= 0.

Then every ξi is either positive or every one of them is negative. From Assumption

2.3.1, g′i(‖y − xi‖) < 0 for all i. Thus, the strict monotonicity of the gi ensures that

either for all i, ‖y∗ − xi‖ > ‖y − xi‖ or for all i, ‖y∗ − xi‖ < ‖y − xi‖. As both y and

y∗ are in co{x1, · · · , xN+1}, Lemma 2.2 precludes either possibility. Thus η = 0, and

from (2.18) and (2.6), J(y) = 0. On the other hand if J(y) = 0, then clearly from

(2.7), (2.17) holds.

Remark 2.2. We observe that this theorem too holds if the strictly decreasing nature

of all the g(.) is replaced by their being strictly increasing.

Thus should the source be in the open convex hull of N + 1 sensors avoiding

any N−1-dimensional hyperplane, then source estimation is guaranteed provided the

location estimate never leaves the convex hull.

In practice however, it may leave the convex hull, even if the initial estimate

is in the convex hull. To combat this, consider the following augmented gradient

descent algorithm. If in (2.7), y[k + 1] /∈ co{x1, · · · , xN+1}, then choose y[k + 1] to

be a randomly chosen point inside the open convex hull. We now argue that such a

projection based algorithm will converge in probability as long as the source is inside

the open convex hull. Define J̄ to be minimum value of J(y) at the boundary of

co{x1, · · · , xN+1}, and

S =
{
y ∈ RN

∣∣J(y) < J̄
}⋂

co{x1, · · · , xN+1}.

This set has nontrivial extent as y∗ ∈ co{x1, · · · , xN+1}, and J(y∗) = 0. Thus with
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probability 1, there exists k1 such that a projected estimate at k1 will enter this set.

As S ⊂ co{x1, · · · , xN+1} in view of Theorem 2.3, S satisfies (I) and (II) of Theorem

2.1 and convergence in probability follows. In practice simulations presented in the

next section show, that estimates leave the convex hull very rarely, and that too only

at very low SNR values.

2.3.2 Simulation results

We consider two simulation examples one with N = 2, the other with N = 3.

In both cases we use n = N+1. In (2.2) we use: wi ∼ poisson(λwi) as the background

noise. We also use A = 104. The noise power in evaluating the SNR is the empirical

noise power, i.e. computed by averaging the actual difference between si and

Ae−αdi

d2
i

.

In all cases α = 0.05, µ = 0.0002. The mean squared error (MSE) is averaged over

1000 random initial start points all within the convex hull of the sensors, and the

algorithm is run for 200 iterations for each initial point. Also, for each iteration of

each run, si are generated independently. A projection augmented gradient descent

minimization of (2.6) under (2.4) is performed. The algorithm uses Ae−αdi
di

in comput-

ing the gradient and the effect of the uncertainty in A is thus subsumed in the noise

power computation.

Figure 2.3 depicts performance when N = 2. The sensors are at (1,5), (1,13)

and (15,8), the source at (7,8), in their convex hull. Figure 2.4 presents the map of

the average location estimate provided by our algorithm for various SNR values, as
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well as the actual source location. Figure 2.5 is for gauging the convergence speed.

For an SNR of 47dB it plots the MSE as a function of the iteration index k. The MSE

at each value of k is obtained by averaging over the random runs described above.

The fast rate of convergence is self-evident.
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Figure 2.3: MSE against SNR in dB with N = 2.

The 3-dimensional counterpart of Figure 2.3 is depicted in Figure 2.6. The

sensors are at (1,5,2), (1,13,2), (15,8,2) and (3,4,12) and the source is at (7,8,4). The
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Figure 2.4: The map of the average source location estimate for various SNRs and

the true source location.

performance is depicted in figure 2.6.

A noteworthy fact about all these simulations is that except in low SNR

regimes, the estimates do not leave the convex hull. Even with low SNRs they leave

the convex hull only about 1% of times.

2.4 Estimation of known radioactive sources using precisely N sensors

Consider arbitrary N ≥ 2 and a fairly general observation model that in the

noise free case obeys (2.3) and satisfies assumption 2.3.1. Observe that the gradient
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Figure 2.5: MSE vs k for SNR 47 dB.

of (2.4) is:

g′ (di) = −g(di)

(
2

di
+ α

)
(2.19)

which is negative for α ≥ 0. Therefore g (di) is strictly decreasing for α ≥ 0, i ∈

{1, · · · , N}.

Now consider the cost function (2.6). Suppose the xi ∈ RN avoid an (N −

2)-dimensional hyperplane. Then clearly the global minima of (2.6) is a finite set

including y = y∗. Consequently, the gradient descent minimization of (2.6) is a
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candidate localization algorithm. Specifically, with y[k] the current estimate of y∗,

and sufficiently small µ > 0, such an algorithm will proceed as (2.7). The knowledge of

the α and zi in (2.4) ensures that (2.7) is implementable. Whether we can get y = y∗

uniquely is the subject of our main results in section 2.4.1. Recall the gradient of the

cost function in (2.8). We also note that with g(·) as in (2.4), the estimate minimizing

(2.6) would be the maximum likelihood estimate, if wi in (2.2) were Gaussian. Though

in practice wi is modeled as poisson, high variance poisson distributions are well

approximated by Gaussian ones.
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2.4.1 The main result

We now make two assumptions.

Assumption 2.4.1. The number of sensors n, precisely equals N and the sensors

located at xi ∈ RN , N ∈ {2, 3} do not lie on an (N − 2)-dimensional hyperplane.

Recall this is one less than the minimum number of sensors needed to achieve

localization from the zi in (2.3). Before we state the second assumption, define:

Hv =

{
ψ ∈ RN |ψ = x1 +

N∑
i=2

aiei−1 ,∀ai ∈ R

}
(2.20)

where

ei =
(xi − x1)−

∑i−1
k=1

(xk−x1)·(xi−x1)
(xk−x1)·(xk−x1)

(xk − x1)

‖(xi − x1)−
∑i−1

k=1
(xk−x1)·(xi−x1)
(xk−x1)·(xk−x1)

(xk − x1)‖
(2.21)

Also define ∀z ∈ RN

ẑ =
N−1∑
i=1

(z · ei)ei −

∥∥∥∑N−1
i=1 (x1 · ei)ei − x1

∥∥∥(∑N−1
i=1 (z · ei)ei − z

)
∥∥∥∑N−1

i=1 (z · ei)ei − z
∥∥∥ . (2.22)

Here xi ·ei is the scalar dot product. Notice that (2.20) is an (N-1)-dimensional

hyperplane containing all the xi’s and (2.22) is an orthonormal projection of all points

in RN unto Hv. The second assumption presumes that a very crude detection of the

source has occurred and xi’s have been placed so that ŷ∗ is in their convex hull.

Assumption 2.4.2. y∗ ∈ RN , N ∈ {2, 3} is in one open half plane separated by Hv

and ŷ∗ ∈ RN , N ∈ {2, 3} is in co{x1, · · · , xN}.

Before presenting our main result, we first provide a Lemma.
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Lemma 2.4. Under assumptions 2.4.1 and 2.4.2 suppose ŷ ∈ RN , N ∈ {2, 3} obeys:

(a) ŷ 6= ŷ∗ and (b) ŷ ∈ co{x1, · · · , xN}. Then (I) there exist i, j ∈ {1, · · · , N}

such that: ‖xi − ŷ‖ < ‖xi − ŷ∗‖, and ‖xj − ŷ‖ > ‖xj − ŷ∗‖. (II) for such i, j in

(I), if ‖y − ŷ‖2 < ‖y∗ − ŷ‖2 + 2‖xi − ŷ‖‖ŷ − ŷ∗‖, then ‖xi − y‖ < ‖xi − y∗‖, and

‖xj − y‖ > ‖xj − y∗‖.

Proof. As ŷ 6= ŷ∗ ⇒ y 6= y∗, there exists an (N − 1)-dimensional hyperplane H that

separates RN into two open half planes, H and H∗, such that:

H =
{
η ∈ RN |‖η − ŷ‖ < ‖η − ŷ∗‖

}
and H∗ =

{
η ∈ RN |‖η − ŷ‖ > ‖η − ŷ∗‖

}
. Fur-

ther, H =
{
η ∈ RN |‖η − ŷ‖ = ‖η − ŷ∗‖

}
. For (I) of the Lemma to be false either for

all i ∈ {1, · · · , N}

xi ∈ H∗
⋃

H (2.23)

or for all i ∈ {1, · · · , N}

xi ∈ H
⋃

H. (2.24)

By the separating hyperplane theorem in case of (2.23), ŷ /∈ co{x1, · · · , xN} and in

case of (2.24), ŷ∗ /∈ co{x1, · · · , xN}. The contradiction proves (I). Since {ŷ∗, ŷ} are

projections of {y∗, y} along two distinct parallel hyperplanes orthonormal to Hv, if

‖xi − ŷ‖ < ‖xi − ŷ∗‖, and ‖y − ŷ‖2 < ‖y∗ − ŷ‖2 + 2‖xi − ŷ‖‖ŷ − ŷ∗‖ then ‖xi − y‖ <

‖xi − y∗‖. Similarly if ‖xj − ŷ‖ > ‖xj − ŷ∗‖, then ‖xj − y‖ > ‖xj − y∗‖. This proves

(II).

We now present our main result that shows that should ŷ∗ lie in co{x1, · · · , xN},

and should there be precisely N sensors in RN , then each open half plane of RN sepa-
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rated by Hv has exactly one minimum whose orthonormal projection unto Hv lies in

co{x1, · · · , xN} and no false stationary points. Knowledge of which open half plane

contains the source suffices to estimate the radioactive source.

Theorem 2.5. Consider (2.6) under assumptions 2.3.1, 2.4.1 and 2.4.2. Consider

ŷ ∈ co{x1, · · · , xN}. Then there holds:

∂J(y)

∂y
= 0⇔ J(y) = 0.

Proof. Since ŷ ∈ co{x1, · · · , xN}, there exist βi > 0, such that from (2.15) and (2.16)

we obtain:

N∑
i=1

βixi =

(
N∑
i=1

βi

)
ŷ ⇔

N∑
i=1

βi(xi − ŷ) = 0. (2.25)

In other words β = [β1, · · · , βN ]> is in the right null space of the matrix: X (ŷ) =[
x1 − ŷ · · · xN − ŷ

]
. As the xi’s do not lie on an (N − 2)-dimensional hyperplane

X (ŷ) has rank N − 1 for all ŷ ∈ RN . Thus its nullspace has dimension 1, and as

βi > 0, all its non-zero null vectors have elements that are either all positive, or are all

negative. Without loss of generality, suppose x1 = 0. This is easily attained through

translation. We abuse notation by maintaining xi’s and {y, y∗} after translation to

preserve clarity. Then (2.22) becomes

ẑ =
N−1∑
i=1

(z · ei)ei. (2.26)

Now suppose

∂J(y)

∂y
= 0. (2.27)
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This means

2
N∑
i=1

(zi − g (di)) g
′ (di)

di
(xi − y) = 0 (2.28)

Define:

ξi =
(zi − gi(di)) g′i(di)

di
(2.29)

Then (2.28) becomes

2
N∑
i=1

ξi(xi − y) = 0⇔

N−1∑
k=1

((
2

N∑
i=1

ξi(xi − y)

)
· ek

)
ek = 0

2
N−1∑
k=1

N∑
i=1

ξi((xi · ek)ek − (y · ek)ek) = 0

2
N∑
i=1

ξi

N−1∑
k=1

((xi · ek)ek − (y · ek)ek) = 0

2
N∑
i=1

ξi(x̂i − ŷi) = 0

(2.30)

Now, since the xi’s are on Hv, x̂i = xi∀i. Therefore (2.30) becomes

2
N∑
i=1

ξi(xi − ŷi) = 0 (2.31)

ξ = [ξ1, · · · , ξN ]> is in the null space of X (ŷ) from (2.31) and (2.25) . Now

suppose ξ 6= 0. Then every ξi is either positive or every one of them is negative. From

Assumption 2.3.1, g′i(‖y − xi‖) < 0 for all i. Thus, the strict monotonicity of the gi

ensures that either for all i, ‖y∗− xi‖ > ‖y− xi‖ or for all i, ‖y∗− xi‖ < ‖y− xi‖. As

both ŷ and ŷ∗ are in co{x1, · · · , xN}, Lemma 2.4 precludes either possibility. Thus

ξ = 0 meaning that ‖y∗ − xi‖ = ‖y − xi‖,∀i. Since we know which open half plane
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contains y∗, there is exactly 1 solution of ‖y∗ − xi‖ = ‖y − xi‖, ∀i ⇒ y = y∗. From

(2.29) and (2.6), J(y) = 0. On the other hand if J(y) = 0, then clearly from (2.7),

(2.27) holds.

A critical procedure in this technique is the initial crude estimate to gauge

the location of the source. How do we know that the projection of the source unto

Hv lies in co{x1, · · · , xN}? And how do we know which open half plane, using Hv

as the separating hyperplane contains the source? This turns out to be very simple.

Consider Figure 2.7 with two sensors at {x1, x2} and the source at y∗ for the 2-

dimension case. The hyperplane Hv separates R2 into two open half planes. Using

two sets of perturbations of {x1, x2} by {δ1, δ2} and {ξ1, ξ2} along Hv and orthogonal

to Hv respectively both decrease the measurements of sensors 1 and 2 ideally and

show crudely that the projection of y unto Hv is in co{x1, x2} and y∗ is above Hv.

Taking a number or measurements and averaging will approach the ideal situation

using the law of large numbers. This clearly scales to RN .

In practice however, the projection of the estimate may leave co{x1, · · · , xN},

even if the projection of the initial estimate is in the convex hull. To combat this

consider the following augmented gradient descent algorithm. If in (2.7), ŷ[k + 1] /∈

co{x1, · · · , xN}, then choose y[k + 1] to be a randomly chosen point such that ŷ[k +

1] ∈ co{x1, · · · , xN}. We now argue that such a projection based algorithm will

converge in probability as long as the orthonormal projection of the source unto Hv

lies in co{x1, · · · , xN}. Define J̄ to be minimum value of J(y) at the boundary of
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Figure 2.7: 2-Dimensions example for estimating which open half plane contains y∗

co{x1, · · · , xN}, and

S =
{
y ∈ RN

∣∣J(y) < J̄
}⋂
{ŷ ∈ co{x1, · · · , xN}}.

This set has nontrivial extent as ŷ∗ ∈ co{x1, · · · , xN}, and J(y∗|ŷ∗ ∈ co{x1, · · · , xN}) =

0. Thus with probability 1, there exists k1 such that a projected estimate at k1 will

enter this set. As S ⊂ {x|x̂ ∈ co{x1, · · · , xN}} in view of Theorem 2.5, S satisfies (I)

and (II) of Theorem 2.1 and convergence in probability follows. In practice, simula-

tions presented in the next section show, that orthonormal projections of the estimate

unto Hv leaves co{x1, · · · , xN} very rarely, and that too only at very low SNR values

when the estimate approaches to the separating hyperplane Hv.

2.4.2 Simulation results

We consider simulations with N = 2 using exactly 2 sensors. The received

signal at sensor i is: si ∼ poisson
(
A
d2i
e−αdi + w

)
and w is the background noise. The
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SNR is computed as:

SNR = 10 log10

∑N
i=1

Ae−αdi
d2i∑N+1

i=1 w

 .

In all cases α = 0.0068, A = 2×107 and µ = 0.0005. The mean squared error (MSE) is

averaged over 100 random initial start points ∈ {z|ẑ ∈ co{x1, x2}} and in the known

open half space separated by Hv. The algorithm runs for 20000 iterations. Also,

for each iteration of each run, the si’s are Poisson and generated independently. A

projection augmented gradient descent minimization of (2.6) under (2.4) is performed.

The fact that the actual si differ from the value used in generating the gradient,

confirms the robustness of the algorithm to uncertainties in the si.

Figure 2.8 depicts performance when N = 2. The sensors are at (−100, 0) and

(100, 0), the source is at y∗ = (40, 100), ŷ∗ ∈ co{x1, · · · , xN+1}. Figure 2.9 presents

the map of the average location estimate provided by our algorithm for various SNR

values, as well as the actual source location. Figure 2.10 is for gauging the convergence

speed. For an SNR of 6dB it plots the MSE as a function of the iteration index k. The

MSE at each value of k is obtained by averaging over the 100 random runs described

above. The fast rate of convergence is self-evident.

A noteworthy fact about all these simulations is that except in low SNR

regimes, the estimates do not leave the convex hull. Even with low SNRs they leave

the convex hull only about 1% of times. Further, the expectation of the received sig-

nal at the sensors in the absence of noise are very small, [210, 665]T . The simulations

show the robustness of our algorithm. It is also noticeable that the MSE saturates

around 104 for low SNR. This is approximately the square of the distance of the
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Figure 2.8: MSE against SNR with N = 2.

source from the hyperplane Hv. Thus, making Hv close to the source will reduce the

measurement error proportionately.

2.5 Estimation of unknown radioactive sources using precisely N + 1

sensors

We provide a novel approach to localizing unknown radioactive sources using

precisely N + 1 sensors in N -dimensions. We make an assumption that the source is

in the convex hull of the N + 1 sensors.
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Figure 2.9: The map of the average source location estimate for various SNRs and

the true source location.

Consider arbitrary N ≥ 2 and a fairly general observation model that in the

noise free case obeys

zi = h(νi), νi =
di
d1

, i ∈ {2, · · · , N + 1} (2.32)

with di and d1 as in (2.1). In the sequel, the h(νi) will satisfy the following assumption.

Assumption 2.5.1. For νi > 0, i ∈ {2, · · · , n}, h(νi) is strictly decreasing and

analytic. Further for every ρ1, ρ2 > 0, there exists M(ρ1, ρ2) such that the h(νi)
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Figure 2.10: MSE vs k for SNR 6 dB.

and their first two derivatives are all bounded in magnitude by M(ρ1, ρ2) whenever

ρ1 ≤ νi ≤ ρ2.

It is readily seen that with α > 0,

h(νi) =
si
s1

= ν−2
i e−αd1(νi−1) (2.33)

obeys Assumption 2.5.1, as does the standard RSS model where α = 0. Observe that

the gradient of (2.33) is:
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h′(νi) = −h(νi)

(
2

νi
+ αd1

)
(2.34)

which is non positive for α ≥ 0. Therefore h(νi) is strictly decreasing for α ≥ 0, i ∈

{2, · · · , N + 1}.

Now consider the cost function:

J(y) =
n∑
i=2

(zi − h(νi))
2 (2.35)

Suppose the xi ∈ RN avoid an (N − 1)-dimensional hyperplane. Then clearly the

global minima of (2.35) is a finite set including y = y∗. Consequently, the gradi-

ent descent minimization of (2.35) is a candidate localization algorithm and can be

implemented using (2.7). The knowledge of α and zi in (2.33) ensures that (2.7) is

implementable. Whether we can get y = y∗ uniquely is the subject of our main results

in section 2.5.1. Observe:

∂J(y)

∂y
=

2

d2
1

n∑
i=2

(zi − h(νi))h
′(νi)

(
1

νi
(xi − y)− νi(x1 − y)

)
(2.36)

We also note that with h(νi) as in (2.33), the estimate minimizing (2.35) would

be the maximum likelihood estimate, if wi in (2.2) were Gaussian and λ1
wi
� 1. For

λ1
wi
� 1:

zi =

(
λi + wi
λ1

)(
1 +

∞∑
n=0

(
−w1

λ1

)n+1
)
≈ λi
λ1

+
wi
λ1

. (2.37)

Though in practice wi is modeled as Poisson, high variance Poisson distributions are

well approximated by Gaussian ones. In the event Theorem 2.1 applies.
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2.5.1 The main result

We begin with a lemma.

Lemma 2.6. Suppose {y, y∗, x1} ∈ RN obeys: (a) y 6= y∗ and (b) {y, y∗} 6= x1.

(I) If ‖x1 − y‖ 6= ‖x1 − y∗‖, then S =
{
η ∈ RN

∣∣∣‖η − y‖ ≤ ‖x1−y‖
‖x1−y∗‖‖η − y

∗‖
}

is an

N-dimensional hypersphere.

(II) If ‖x1 − y‖ = ‖x1 − y∗‖, then S =
{
η ∈ RN

∣∣∣‖η − y‖ ≤ ‖x1−y‖
‖x1−y∗‖‖η − y

∗‖
}

is an

N- dimensional open half plane with a separating hyperplane

H =

{
η ∈ RN

∣∣∣∣‖η − y‖ =
‖x1 − y‖
‖x1 − y∗‖

‖η − y∗‖
}
.

Proof. Without loss of generality, suppose x1 = 0. This can be attained through

translation and rotation because distance measurements are invariant under transla-

tion and rotation. We abuse notation and maintain the variables y and y∗ to preserve

clarity. ⇔

(η − y)T (η − y) ≤ ‖y‖
2

‖y∗‖2
(η − y∗)T (η − y∗)

ηTη

(
1− ‖y‖

2

‖y∗‖2

)
− 2ηT

(
y − ‖y‖

2

‖y∗‖2
y∗
)
≤ −

(
‖y‖2 − ‖y‖

2

‖y∗‖2
‖y∗‖2

)
ηTη

(
1− ‖y‖

2

‖y∗‖2

)
− 2ηT

(
y − ‖y‖

2

‖y∗‖2
y∗
)
≤ 0⇔

(2.38)

Case I: Suppose ‖y‖ 6= ‖y∗‖ and without loss of generality ‖y‖ < ‖y∗‖, then

from (2.38)

ηTη

(
1− ‖y‖

2

‖y∗‖2

)
︸ ︷︷ ︸

β2,β>0

−2ηT
(
y − ‖y‖

2

‖y∗‖2
y∗
)

︸ ︷︷ ︸
z

≤ 0⇔

ηTη − 2
ηT z

β2
+
zT z

β4
≤ zT z

β4
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(
η − z

β2

)T (
η − z

β2

)
≤ zT z

β4
(2.39)

(2.39) is an N-dimensional hypersphere. This proves (I).

Case II: Suppose ‖y‖ = ‖y∗‖ , then from (2.38)

ηTη

(
1− ‖y‖

2

‖y∗‖2

)
− 2ηT

(
y − ‖y‖

2

‖y∗‖2
y∗
)
≤ 0

ηT (y∗ − y) ≤ 0 (2.40)

(2.40) is an N-dimensional open half plane with a separating (N-1)-Dimensional

hyperplane of ηT (y∗ − y) = 0. This proves (II).

Theorem 2.7. Suppose {y, y∗} ∈ RN obeys:

(a) y 6= y∗

(b) S =
{
η ∈ RN

∣∣∣‖η − y‖ ≤ ‖x1−y‖
‖x1−y∗‖‖η − y

∗‖
}

and

(c) y ∈ S.

Then y∗ /∈ S.

Proof. Suppose y∗ ∈ S. Chose η = y∗ ∈ S ⇔

‖y∗ − y‖ ≤ ‖x1 − y‖
‖x1 − y∗‖

‖y∗ − y∗‖

‖y∗ − y‖ ≤ 0⇔

y = y∗

(2.41)

This is an obvious contradiction and completes the proof.



www.manaraa.com

41

Lemma 2.8. Under Assumption 2.3.2, suppose {y, y∗, xi} ∈ RN , i ∈ {1, · · · , N + 1}

obeys:

(a) y 6= y∗

(b) νi = ν∗i

(c) S =
{
η ∈ RN

∣∣∣‖η − y‖ ≤ ‖x1−y‖
‖x1−y∗‖‖η − y

∗‖
}

.

Then S is strictly an N-Dimensional hypersphere. Further co{x1, · · · , xN+1} ⊂ S.

Proof. From Assumption 2.3.2 and (b), the xi’s form an N-polytope with (N+1)

vertices. The vertices of the N-polytope are the xi’s which lie on the boundary of S.

Since an N-polytope cannot be formed on an (N-1) hyperplane, the xi’s cannot lie

on (2.40). The xi’s lie on (2.39) which is a hypersphere. It also follows that since

co{x1, · · · , xN+1} is a polytope with the xi’s on the boundary of the hypersphere S,

the co{x1, · · · , xN+1} ⊂ S. This concludes the proof.

Theorem 2.9. Under Assumptions 2.3.2 and 2.3.3, suppose {y, y∗, xi} ∈ RN , i ∈

{1, · · · , N + 1} obeys:

(a) {y, y∗} ∈ co{x1, · · · , xN+1}

(b) νi = ν∗i and

(c) S =
{
η ∈ RN

∣∣∣‖η − y‖ ≤ ‖x1−y‖
‖x1−y∗‖‖η − y

∗‖
}

.

Then y = y∗.

Proof. From Theorem 2.7, if y 6= y∗ and y∗ ∈ S, then y /∈ S. However from Lemma

2.8, S is a hypersphere and co{x1, · · · , xN+1} ⊂ S meaning if y 6= y∗, y∗ /∈ S ⇔ y∗ /∈

co{x1, · · · , xN+1} . Therefore {y, y∗} ∈ co{x1, · · · , xN+1} if and only if y = y∗. This

concludes the proof.
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We now complete our results by showing that N + 1 measurements in N-

Dimensions is enough to localize a source in the convex hull of N+1 sensors even if

A is unknown.

Our final result shows that should the source lie in the open convex hull of

the sensors, and should there be precisely the minimum number of sensors required

to estimate the source, then the open convex hull of the sensors is bereft of false

stationary points. Further there is exactly 1 optimum in the convex hull.

Theorem 2.10. Consider (2.35) under assumptions 2.5.1, 2.3.2 and 2.3.3. Consider

y ∈ co{x1, · · · , xN+1}. Then there holds:

∂J(y)

∂y
= 0⇔ J(y) = 0.

Proof. From (2.15) and (2.16) we obtain:

N+1∑
i=1

βixi =

(
N+1∑
i=1

βi

)
y ⇔

N+1∑
i=1

βi(xi − y) = 0.

In other words β = [β1, · · · , βN+1]> is in the right nullspace of the matrix: X (y) =[
x1 − y · · · xN+1 − y

]
. As the xi’s do not lie on an (N−1)-dimensional hyperplane

X (y) has rank N for all y ∈ RN . Thus its nullspace has dimension 1, and as βi > 0, all

its non-zero null vectors have elements that are either all positive, or are all negative.

Now suppose

∂J(y)

∂y
= 0. (2.42)

Notice that (2.34) can be re-written as:

∂J(y)

∂y
=

2

d2
1

n∑
i=2

(zi − h(νi))h
′(νi)

1

νi

(
(xi − y)− ν2

i (x1 − y)
)

(2.43)
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Define:

ξi =
2

d2
1

n∑
i=2

(zi − h(νi))h
′(νi)

1

νi
(2.44)

and

ξ1 = −
n∑
i=2

ξiν
2
i (2.45)

and notice that we can substitute (2.44) and (2.45) in (2.43) to obtain

∂J(y)

∂y
=

2

d2
1

N+1∑
i=1

ξi(xi − y) (2.46)

From (2.46) , ξ = [ξ1, · · · , ξN+1]> is in the right null space of X (y) if ∂J(y)
∂y

= 0.

Now suppose ξ 6= 0. Then every ξi is either positive or every one of them is negative.

Suppose ξi > 0, i ∈ {2, · · · , N + 1}.Then ξ1 < 0 from (2.45). Similarly suppose

ξi < 0, i ∈ {2, · · · , N + 1}.Then ξ1 > 0 from (2.45). This is an obvious contradiction.

Therefore ξi = 0, i ∈ {1, · · · , N + 1}.

From Assumption 2.5.1, {h′(νi), h′(ν∗i )} < 0 for all i. Thus, the strict mono-

tonicity of the h(νi) ensures that for all i ∈ {2, · · · , N + 1}, zi = h (νi) using (2.44).

Since zi = h (ν∗i ) in the noise free case, h (ν∗i ) = h (νi)⇒

νi = ν∗i , i ∈ {1, · · · , N + 1} (2.47)

As both y and y∗ are in co{x1, · · · , xN+1}, Theorem 2.9 precludes the possi-

bility of (2.47) if y 6= y∗.

Thus ξ = 0, y = y∗, and from (2.44), (2.45) and (2.35), J(y) = 0. On the

other hand if J(y) = 0, then clearly from (2.7), (2.42) holds.
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Remark 2.3. The result is counter intuitive; that we can still estimate the radioactive

source with precisely N + 1 having an additional unknown variable A. We can show

this result to be true in the 1-D case for the conventional RSS model where path loss

coefficient α = 0 in (2.2). In this case, two sensor measurements is sufficient to localize

the source even though there is an additional unknown parameter A. Consider Figure

2.11. With α = 0, the ratio of the measurements at the two sensor measurements

Figure 2.11: Illustration of a source in the convex hull of two sensors

will result in one equation:

z2 =
1

ν2
2

(2.48)

Suppose z2 = c2 for some c > 0. Then any solution y must satisfy

(y − x1)2 = c2(y − x2)2. (2.49)

Also, with the knowledge that the source lies in the convex hull of x1 and x2, ∃βi >

0, i ∈ {1, 2} such that

2∑
i=1

βi(y − xi) = 0

β1(y − x1) + β2(y − x2) = 0

y =
β1

β1 + β2

x1 +

(
1− β1

β1 + β2

)
x2. (2.50)
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Let β1
β1+β2

= β where 0 < β < 1. (2.50) can now be written as

y = βx1 + (1− β)x2. (2.51)

We can now solve (2.49) and (2.51) for β.

((β − 1)x1 + (1− β)x2)2 = c2(βx1 − βx2)2

(1− β)2(x2 − x1)2 = β2c2(x1 − x2)2(
1

β
− 1

)2

= c2

(
1

β
− 1− c

)(
1

β
− 1 + c

)
= 0 (2.52)

From (2.52), either c = 1
β
− 1 or c = 1 − 1

β
. Since 1 − 1

β
< 0 and c > 0 because

0 < β < 1, there is only one unique solution of β: β = 1
1+c

. Notice that, this confirms

theorem 2.10 for the 1-dimensional conventional RSS model. There are two solutions

but only one is in the convex hull of x1 and x2 and for this solution y = y∗.

Remark 2.4. We observe that theorem 2.10 also holds if the strictly decreasing nature

of all the h(νi) is replaced by their being strictly increasing.

Thus should the source be in the open convex hull of N + 1 sensors avoiding

any N−1-dimensional hyperplane, there is only 1 optimum in the convex hull and the

convex hull is also devoid of any false mimima. Localization is therefore guaranteed

provided the location estimate never leaves the convex hull.

In practice however, it may leave the convex hull, even if the initial estimate

is in the convex hull. To combat this, consider the following augmented gradient

descent algorithm. If in (2.7), y[k + 1] /∈ co{x1, · · · , xN+1}, then choose y[k + 1] to
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be a randomly chosen point inside the open convex hull. We now argue that such a

projection based algorithm will converge in probability as long as the source is inside

the open convex hull. Define J̄ to be minimum value of J(y) at the boundary of

co{x1, · · · , xN+1}, and

S =
{
y ∈ RN

∣∣J(y) < J̄
}⋂

co{x1, · · · , xN+1}.

This set has nontrivial extent as y∗ ∈ co{x1, · · · , xN+1}, and J(y∗) = 0. Thus with

probability 1, there exists k1 such that a projected estimate at k1 will enter this set.

As S ⊂ co{x1, · · · , xN+1} in view of Theorem 2.10, S satisfies (I) and (II) of Theorem

2.1 and convergence in probability follows. In practice, simulations presented in the

next section show, that estimates leave the convex hull very rarely, and that too only

at very low SNR values.

2.5.2 Simulation results

We consider two simulation examples; one with N = 2, the other with N =

3. In both cases we use n = N + 1. The received signal at sensor i is: si ∼

poisson
(
A
d2i
e−αdi + w

)
and w is the background noise. The SNR is computed as:

SNR = 10 log10

∑N+1
i=1

Ae−αdi
d2i∑N+1

i=1 w

 = 10 log10

∑N+1
i=1

Ae−αdi
wd2i

N + 1

 .

In all cases α = 0.0068, A = 2 × 107. µ = 20 for N = 2 and µ = 12 for N = 3.

The mean squared error (MSE) is averaged over 5000 random initial start points all

within the convex hull of the sensors. The algorithm runs for 1000 iterations for both

N = 2 and N = 3. Also, for each iteration of each run, the si’s are Poisson and
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generated independently. A projection augmented gradient descent minimization of

(2.35) under (2.33) is performed. The fact that the actual si differ from the value used

in generating the gradient, confirms the robustness of the algorithm to uncertainties

in the si with unknown A.

Figure 2.12 depicts performance when N = 2. The sensors are at (-100,-100),

(100,-100) and (-50,100), the source is at (20,-40),∈ co{x1, · · · , xN+1}. Figure 2.13

presents the map of the average location estimate provided by our algorithm for

various SNR values, as well as the actual source location. Figure 2.14 is for gauging

the convergence speed. For an SNR of 6dB it plots the MSE as a function of the

iteration index k. The MSE at each value of k is obtained by averaging over the 5000

random runs described above. The fast rate of convergence is self-evident.

The 3-dimensional counterpart of Figure 2.12 is depicted in Figure 2.15. The

sensors are at (-100,-100,0), (100,-100,0), (-50,100,0) and (0,100,100) and the source

is at (20,-40,5). The performance is depicted in figure 2.15.

A noteworthy fact about all these simulations is that except in low SNR

regimes, the estimates do not leave the convex hull. Even with low SNRs they leave

the convex hull only about 1% of the time. Further, the expectation of the signal at

the sensors in the absence of noise are very small. For N = 2 the received signals

devoid of noise are [446, 1013, 281]T whiles those for N = 3 are [445, 1010, 281, 216]T .

The simulations show the robustness of our algorithm.
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Figure 2.12: MSE against SNR with N = 2.

2.6 Conclusion

We have considered projection based gradient descent estimation of known

and unknown radioactive sources from gamma ray counts using the smallest number

of measurement sensors under three general assumptions. Our algorithms are all

devoid of false stationary points and achieve global uniform asymptotic convergence

in probability. Simulations demonstrate robustness of our algorithms. Our results

in this chapter apply to a much wider class of signal models than just (2.2). In

Chapter 3, we consider tracking of radioactive sources using cheap binary proximity
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Figure 2.13: The map of the average source location estimate for various SNRs and

the true source location.

sensors. We are interested in tracking radioactive sources moving on piece-wise linear

trajectories.
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Figure 2.15: MSE against SNR with N = 3.
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CHAPTER 3
TRACKING OF RADIOACTIVE SOURCES WITH CHEAP BINARY

PROXIMITY SENSORS

3.1 Introduction

In this chapter, we describe and provide novel approaches to tracking radioac-

tive sources on piecewise linear trajectories through a network of binary proximity

sensors.

We consider a network of inexpensive and simple binary proximity sensors as

a way to handle this fundamental issue. This is in keeping with the basic philos-

ophy of large-scale sensor networks [30] that favors distributed networks of simple,

inexpensive, disposable sensors to a small number of complex, expensive ones. We

allow individual sensors to be simple, inaccurate and vulnerable to drift and calibra-

tion errors, and rely on statistical robustness by combining the observations of many

sensors. With noisy sensors, it is also possible to radically quantize observations [31]

with little sacrifice in performance.

We ask the following fundamental question: How many binary sensors are

needed to track an object moving on an unknown piece-wise linear trajectory with

unknown speed? We are motivated by the observation that inertial and other dynam-

ical constraints restrict most trajectories to be smooth; and smooth trajectories can

be arbitrarily well approximated by piece-wise linear trajectory joins. We assume

that all sensors have the same sensing range and know their neighbor’s location.

In the first major result, we show that three generically placed sensors can
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uniquely determine almost all linear trajectories that intersect with their sensing

range, if the nominal sensing range is known, simply by observing the times at which

the target enters and leaves these sensing ranges. In the second major result, we

show that four generically placed sensors can uniquely determine almost all linear

trajectories that intersect with their sensing range, even if the nominal sensing range

is not known, simply by observing the times at which the target enters and leaves

these ranges. We do not require these sensors to have overlapping sensing ranges

in both results. This naturally extends to piece-wise linear trajectories. We also

show that under the assumption of uniformly distributed sensors, vanishingly small

densities can uniquely determine a straight line trajectory with vanishingly small error

probability. Thus, the sensor density required to almost surely track an arbitrary

trajectory with a prescribed error is determined only by the number of straight lines

needed to approximate that trajectory to that error level. This contrasts with say

[22] where straight line trajectories are approximated by averaging the locations of

the sensors whose sensing ranges they cross. Consequently, even in the zero noise

case, achieving a prescribed level of accuracy in tracking a linear trajectory cannot

be thus limited. Even though, the problem of determining the points of intersection

of a straight-line trajectory with the coverage area of a binary sensor is non-linear, our

first result, the case of known nominal sensing range, presents a linear reformulation

of the tracking problem that allows a simple least-squares solution. Based on the

linear reformulation, we present a practical, computationally efficient algorithm to

solve the piecewise linear trajectory estimation problem. We present an extensive
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set of simulations to illustrate the performance of our proposed approach and its

robustness to sensor errors and uncertainties. Our second result also leads to a Newton

based iterative algorithm which relies solely on the “on” and “off” times denoting

a radioactive source entering and leaving the unknown sensing range of a sensor

respectively.

Consider a stationary source located at y∗ ∈ R2, and binary proximity sensors

located at xi ∈ R2. Define di = ‖xi− y∗‖ where ‖ · ‖ denotes the 2-norm. The sensors

themselves can be a number of portable and non-portable gamma-ray spectrometers

[6] which produce an indicator signal Ii, dependent on the total gamma-ray counts

received [5]:

Ii =


1, if Poisson

(
Ae−αdi
d2i

+ wi

)
≥ Td

0, if Poisson
(
Ae−αdi
d2i

+ wi

)
< Td

(3.1)

A,α and wi are as defined in Chapter 2. Td is a predetermined threshold above

the background noise to trigger sensor measurements. We are interested in using the

transitions, 0-1 and 1-0, which define the “on” and “off” times of the binary proximity

sensor to localize the trajectory of the source.

In principle knowledge of the A (or of their mean), α and the “on” and “off”

time measurements provide a noisy estimate of di’s at those points which is an esti-

mate of the sensing range r + ∆r of the sensor where r is the nominal range in the

absence of noise. It is obvious that the sensing range is a function of the statistics of

the source even in the absence of noise. We consider two cases; a priori knowledge

of r and otherwise for a given source and threshold Td. This brings us to our key
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contributions.

3.2 Summary of our contributions

First, we translate a highly nonlinear problem, for a known nominal sensing

range of sensors, of finding the parameters of a line which intersects the sensing range

of a number of sensors into a finite set of linear equations. Infact, we reduce the

problem to a tangent finding problem. We also show that three sensors are enough to

uniquely localize a portion of the linear trajectory with probability one. We finally

show that a line passing through a uniformly distributed sensor network with common

sensing range will intersect with three sensors with probability one.

Second we tackle tracking of a source with unknown nominal sensing range

of sensors. We consider a class of natural, non-convex cost functions, applicable to

observation models much more general than (3.1). We show that when n = 4 in 2-

Dimension space, i.e. a minimum number of sensors is deployed, an iterative descent

minimization of such cost functions converges to the true trajectory with probability

1 for a source moving on a piecewise linear trajectory with constant but unknown

speed and nominal sensing range r.

3.3 Tracking of radioactive sources with known nominal sensing range r

Consider a region of interest D ⊂ R2 over which we would like to track a

moving object, and a binary sensor network of N sensors which are deployed over

the region. Let (xi, yi)’s, i = {1, 2, ..., N} denote the locations of the sensors. Each

sensor continuously monitors the received signal strength of the object of interest and
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compares it with a prescribed threshold as shown in (3.1). The entire measurement

history of a binary sensor can be fully summarized as a set of time-stamps of the

instants when the object enters or leaves the sensing region of the sensor.

We assume here that all sensors are homogeneous, i.e. that all sensors have

the same nominal sensing range r > 0. This is of course an ideal case; in practice

each sensor has a sensing range r + ∆i, i = {1, 2, ..., N} that deviates from the nom-

inal range because of calibration errors or model uncertainties. We initially consider

ideal sensors and subsequently generalize to more realistic models manifested with

uncertainties.

3.3.1 Tracking with known constant speed s

Consider an object that moves on a straight line L in the Cartesian coordinate

system with a known speed s. Suppose the object passes through the sensing ranges

of three binary sensors (small circles) with “on” and “off” times (i.e. the timestamps

of the entry and exit time instants) τi1 and τi2, i = {1, 2, 3} respectively. Since the

time interval τi2 − τi1 and the speed s are available, the chord lengths produced by

the line in the three small circles can be calculated as 2di = s(τi2 − τi1), i = {1, 2, 3}.

The following fact is self-evident.

Lemma 3.1. A line intersects a circle of radius r with the chord lengths 2d, if and

only if the line is a tangent to the concentric circle of radius
√
r2 − d2.

Next we consider a lemma that appeals to the notion of homothetic centers.

Specifically, the homothetic centers of two similar geometric figures are defined as
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points from which both the figures can be seen as a dilation/contraction of one another

[32]. Thus, the internal and external homothetic centers for two circles are as shown

in Figure 3.1 (a) as the points of intersection of the internal and external tangents

respectively.

Figure 3.1: Scenarios that will present non unique tangent to three circles

Lemma 3.2. Consider three non-overlapping circles with noncollinear centers. Sup-

pose there are two distinct lines that are tangents to all three circles. Then the center

of one of the circles must be on a line that is perpendicular to the line connecting

the other centers of the other two circles and passes through one of their homothetic

centers.
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Proof. For two non-overlapping circles, there are four possible shared tangent lines

as shown in Figure 3.1(a). We have three possibilities where the third circle is non-

collinear and shares two tangent lines with both the first two circles. The shared

tangent lines could be one of the following:

1. Two external tangents as in Figure 3.1 (b) if the first two circles have different

radii.

2. Two internal tangent lines as in Figure 3.1 (c)

3. A pair of lines, one external tangent and one internal tangent as in Figure 3.1

(d). Note, however, that this case is exactly the same as in Figure 3.1(c) by

swapping two circles.

In view of the last point only the first two cases need be considered. In both cases

consider the circle depicted by dashed lines. As it is tangent to both external tangent

lines, the center of this circle is on the line that is perpendicular to the line connect-

ing the centers of the first two circles. Also the same line has to pass through the

homothetic center [32]. This completes the proof.

Using this result, we now consider the question of whether the line represent-

ing the object trajectory is generically, uniquely determined by a set of three chord

lengths, 2di, i = {1, 2, 3}, from three sensors.

Theorem 3.3. Consider a straight line L, and a set of three points (xi, yi), i ∈

{1, 2, 3} that obey the following:
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(i) The (xi, yi), i ∈ {1, 2, 3} are mutually independent and uniformly distributed in

D ⊂ R2.

(ii) The circles with radius r centered on (xi, yi) are non-overlapping.

(iii) The straight line L intersects these three circles with chord lengths 2di.

Then the (xi, yi), r and di uniquely determine the line L, with probability 1.

Proof. Because of Lemma 3.1, the chord lengths 2di define three circles of radii√
r2 − d2

i , respectively centered at the points (xi, yi), to which the line is simulta-

neously tangent. Conditioned on (i-iii), with probability 1, these circles will have

non-collinear centers and the center of no circle will be on the line that (a) is perpen-

dicular to the line connecting the centers of other two circles and (b) passes through a

homothetic center of the latter. Then from Lemma 3.2 this line is uniquely determined

from (xi, yi), r and di with probability 1.

If an object travels with known speed on a straight line that intersects the sensing

ranges of three generically placed circles, then the chord lengths 2di can be deter-

mined from s(τi2 − τi1). Thus, Theorem 3.3 proves that such a line can be uniquely

determined for with probability 1.

3.3.1.1 Efficient numerical solution for tracking with known speed s

Theorem 3.3 shows that given the measurements of three binary sensors, a

straight line trajectory can be uniquely determined with high probability. We now

consider the problem of designing an algorithm to estimate the trajectory from the
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measurements. One obvious possibility is to calculate the intersecting points of the

line and circles by directly solving ax+ by + c = 0 jointly with

(x− xi)2 + (y − yi)2 = r2, ∀ i ∈ {1, 2, 3}.

Note that this is a nonlinear (quadratic) equation in the a, b, c coefficients.

More importantly, this direct procedure is not easily generalizable to the case of

unknown speed s, or unknown sensing ranges. We present here an alternative method

that is accurate yet practical and efficient, and which is also easily generalized to more

realistic sensing models tackled in subsequent sections.

We start by noting that the trajectory estimation problem can be reduced

to the problem of finding a shared tangent line to three circles of radius
√
r2 − d2

i

centered at (xi, yi), i = {1, 2, 3} respectively, where 2di = (τi2 − τi1)s. Observe the

distance of the line ax + by + c = 0 to the centers (xi, yi) are |axi+byi+c|√
a2+b2

=
√
r2 − d2

i ,

i = {1, 2, 3}, or in matrix form, for particular sign choices:
x1 y1 1

x2 y2 1

x3 y3 1


︸ ︷︷ ︸

A3


α

β

γ

 =


±
√
r2 − d2

1

±
√
r2 − d2

2

±
√
r2 − d2

3


︸ ︷︷ ︸

e3

(3.2)

subject to α2 + β2 = a2

a2+b2
+ b2

a2+b2
= 1.

Notice that (3.2) can be derived alternately. Define α = a√
a2+b2

, β = b√
a2+b2

and γ = c√
a2+b2

, then the line ax + by + c = 0 can be written as αx + βy + γ = 0.

The points of intersection of this line and a circle centered at (xi, yi) and radius r is
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given by

{x(1), x(2)} =

2xi − 2α
β

(
α
β

+ yi

)
±

√(
2xi − 2α

β

(
yi + γ

β

))2

− 4
β2

(
x2
i +

(
yi + γ

β

)2

− r2

)
2
β2

(3.3)

which reduces to

{x(1), x(2)} =
2xi − 2α

β

(
α
β

+ yi

)
± 2

β

√
r2 − (αxi + βyi + γ)2

2
β2

(3.4)

A chord length 2di with intersections as in (3.4) is equivalent to
‖x(1)−x2‖

β
and

leads to

di =

√
r2 − (αxi + βyi + γ)2 (3.5)

from which (3.2) is obtained. The solution can be easily calculated by for instance

the least squares solution 
α

β

γ

 = (AT3A3)−1AT3 e3 (3.6)

subject to α2 + β2 = 1. (3.7)

Note that as stated the expression in (3.6) is more complicated than it needs

to be; since for 3 sensors A3 is a square matrix, its pseudo-inverse in (3.6) can be

replaced with an inverse, i.e. (3.6) can be simplified to
α

β

γ

 = A−1
3 e3 (3.8)
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We will, however, work with the expression in (3.6) which unlike (3.8) generalizes in

a straight-forward way to arbitrary number of sensors.

There are four solutions (there are eight total possible combinations of the

± signs in (3.2) from which we obtain four distinct sets of equations of the form

(3.6)). Under the conditions of Theorem 3.3 we know that with probability 1, only

one solution exists, i.e., only one of the four possible equations combinations satisfies

α2 + β2 = 1. A natural algorithm thus emerges.

By the results in the previous section, with probability one only one solution

exists, i.e., only one solution satisfies α2 + β2 = 1 which gives rise to the line αx +

βy + γ = 0 as summarized in the following theorem.

Theorem 3.4. Let the centers (xi, yi)’s be iid uniformly distributed in D ∈ R2.

Consider the 4 estimates given by (3.6) (the other 4 are symmetric). With probability

1, there is only one satisfying α2 +β2 = 1 which gives rise to the line αx+βy+γ = 0.

3.3.1.2 Path direction change

If the unknown object moves along a line and triggers three or more binary

sensors, the sensor on-off times together with the available speed provided can be used

to determine the path of the object uniquely from (3.6) and (3.7). Note however that

the path is assumed to be a combination of line segments and thus the object may

change its direction. A consequence is that there does not exist a line passing through

the sensing range of the most recently triggered sensor and the sensing ranges of the

previous two consecutively triggered sensors. In short, equations (3.6) and (3.7) do
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not have any solution. On the other hand, however, it provides an indication that

the object changes its movement direction. Now we are in a position to state the

detection algorithm.

Algorithm 3.1 Least squares iterative search algorithm:

Step 0: Wait until the path triggers three sensors.

Step 1: Calculate di and
√
r2 − d2

i . Determine if a solution of (3.6) and (3.7) exists.

• If such a solution exist, the line αx+ βy + γ = 0 is uniquely determined. Find

the intersecting points of the line and three circles and connect these points by

a line segment. Go to Step 2.

• If such a solution does not exists, connect the center of the most recent triggered

sensor with the end point of the previously calculated line segment. Go to Step

2.

Step 2: Wait until the path triggers another sensor. Combine the on-off times of

the sensor with the information provided by two previously consecutively triggered

sensors. Go to Step 1.

3.3.2 Tracking with unknown constant speed s

The preceding, assumes that the speed of the object is known at all times which

permits us to determine chord lengths from time-stamps. In addition, it also assumes
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that the sensing ranges of different sensors are non-overlapping. We now show how

our approach can be extended to relax these assumptions. The basic idea is to work

with ratios of chord length over short distances where the constant (though unknown)

speed approximation holds. The chord ratios under constant speed assumption have

to be equal to the corresponding ratios of time durations, which can be calculated

from the time-stamp measurements of the binary sensors.

We start by noting that from Theorem 3.3, even when the object speed is

unknown, if we know that a line L is tangent to three circles of known radii, then

barring pathologies, this line will be unique. So in the following, we may assume that

the line will produce at least one non-zero chord, say (τ12− τ11)s 6= 0. Secondly, even

without knowing the speed, the time intervals τi2 − τi1 and the chord length ratios,

li
l1

=



(τ21−τ12)s
(τ12−τ11)s

= τ21−τ12
τ12−τ11 , i = 2

(τ22−τ21)s
(τ12−τ11)s

= τ22−τ21
τ12−τ11 , i = 3

(τ31−τ22)s
(τ12−τ11)s

= τ31−τ22
τ12−τ11 , i = 4

(τ32−τ31)s
(τ12−τ11)s

= τ32−τ31
τ12−τ11 , i = 5

(3.9)

are available. Here as shown in Figure 3.2 for odd i, li is the length of the chord

length within the range of a given sensor, and for even i it is the chord length between

successive sensors.

Theorem 3.5. Consider a straight line L, and a set of three points (xi, yi), i ∈

{1, 2, 3} that obey the following:

(i) The (xi, yi), i ∈ {1, 2, 3} are mutually independent and uniformly distributed in

D ⊂ R2.
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Figure 3.2: Illustration of chord lengths li.

(ii) They are distinct.

(iii) The straight line L intersects the three circles, each of radius r, centered on

(xi, yi), with li 6= 0, i ∈ {1, · · · , 5}, depicted in Figure 3.2.

Then the (xi, yi), r and the ratios

li
l1
, i = {2, 3, 4, 5}

uniquely determine the line L, with probability 1.

Before presenting the proof, we first provide 2 lemmas. Notice that through

a rotation and translation, if need be, it is always possible to assume without loss

of generality that the (unknown) line coincides with the horizontal axis and the first

circle intersects the line at (l1, 0) as shown in Figure 3(A).
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Lemma 3.6. Given an (unknown) line y = kx+ b which intersects 3 circles of radius

r as described before, suppose the centers of the circles are mutually independently

and uniformly distributed in D ⊂ R2. Then, with probability one (with respect to the

uniform distribution), the chord length

li 6= lj, for i 6= j, i, j = {1, 2, ..., 5}

Proof. We only show that li 6= lj, i, j = {1, 2, 3}. The proof of the rest is identical.

For l2 = l1, the center of the second circle has to be on the dashed circle with radius r

centered at (2l1, 0) as shown in Figure 3.2 (A), i.e, on a one dimensional manifold in a

2-dimensional space. For l3 = l1, the center of the second circle has to be on the lines

of y = ±
√
r2 −

(
l1
2

)2
which are again two 1-dimensional manifolds in a 2-dimensional

space as shown in Figure 3.2 (B). For l3 = l2, the center of the second circle has to

satisfy

x = l1 + l2 +
l2
2

= fx(l2)

y = ±

√
r2 −

(
l2
2

)2

= ±fy(l2)

which are two line segments, 0 ≤ l2 ≤ 2r, in a 2-dimensional space as in Figure 3.2 (C).

Since the centers are independently and uniformly distributed, the probability that

the second center lies on any of the above 1-dimensional manifolds in a 2-dimensional

space is zero. This completes the proof.

We note that the main result remains valid even if the conditions of this lemma

are violated. It is just that the proof is greatly simplified by using this lemma. We
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Figure 3.3: The chord length.

now provide the second lemma. For this lemma again without loss of generality, we

may assume that the centers of the first two circles are at the origin and (x2, 0) for

some x2 > 0 respectively.

Lemma 3.7. Consider the setting depicted in Fig. 3.2. Suppose all circles have

radius r, the first two are centered at (0, 0) and (x2, 0) respectively, and the line in

the figure is labeled as L : y = kx+ b. Then, there exist only a finite number of lines

that could intersect the first two circles with the same length ratios li/l1, i = {2, 3}.

Proof. Consider a line L̄ that intersects the first two circles. For the moment, assume

that the line has the form y = kx + b for some k and b. We will find necessary

conditions for k and b so that the line could intersect these two circles with the given

length ratios. Suppose the points of intersection of the line L̄ and the circles, moving
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from left to right in ascending order of i are (v̄i, ūi). For i ∈ {i, 2, 3, 4} these obey:

v̄i
2 + (kv̄i + b)2 = r2, (v̄i − x2)2 + (kv̄i + b)2 = r2.

This implies that with δ = (1 + k2)(b2 − r2),

v̄1 =
−kb−

√
b2k2 − δ

1 + k2
,

ū1 = kv̄1 + b,

v̄2 =
−kb+

√
b2k2 − δ

1 + k2
,

ū2 = kv̄2 + b

and

v̄3 =
−(kb− x2)−

√
(bk − x2)2 − δ

1 + k2
,

ū3 = kv̄3 + b,

v̄4 =
−(kb− x2) +

√
(bk − x2)2 − δ

1 + k2
,

ū4 = kv̄4 + b

Define, as also depicted in Figure 3.4,

l̄i =

∥∥∥∥∥∥∥∥
ūi+1

v̄i+1

−
ūi
v̄i


∥∥∥∥∥∥∥∥ , i = {1, 2, 3}.

If L̄ intersects the first two circles with the same length ratios as L, it follows that

l2
l1

=
l̄2
l̄1
,
l3
l1

=
l̄3
l̄1
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Note that

l̄21 = (ū2 − ū1)2 + (v̄2 − v̄1)2 = (1 + k2)(v̄2 − v̄1)2

=
4(b2k2 − (1 + k2)(b2 − r2))

(1 + k2)

l̄23 = (ū4 − ū3)2 + (v̄4 − v̄3)2

=
4((bk − x2)2 − (1 + k2)(b2 − r2))

(1 + k2)

So
(
l3
l1

)2

=
(
l̄3
l̄1

)2

and
(
l2
l1

)2

=
(
l̄2
l̄1

)2

lead to

b2 − (1 + k2)r2 +
2bkx2 − x2

2

(1− l23
l21

)
= 0

b2 − (1 + k2)r2 +
2bkx2 − x2

2

(1− l22
l21

)
= 0

The denominators of equations are non-zero with probability one as shown in the

previous lemma. By subtracting these two equations and the assumption that x2 6= 0,

bk =
1

2
x2

By plugging bk = 1
2
x2 back into any one of the equations, we have

b2 − r2(1 + k2) = 0⇒ b = ±r
√

1 + k2

and by bk = 1
2
x2

(
1

2
x2)2 = (±rk

√
1 + k2)2

which is a polynomial equation in k and has finite number of solutions by the funda-

mental theorem of algebra [33]. Consequently from bk = 1
2
x2 so is b. This completes

the proof.
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We now turn to the proof of Theorem 3.5.

Proof of Theorem 3.5: First, an arbitrary line αx + βy + γ = 0 can take two

forms, x = c or y = kx + b. However, to show the uniqueness, the proofs for the

cases x = c and y = b are the same by rotating the coordinate by 90◦. So we focus

on the line y = kx+ b as described in the previous two lemmas. Suppose that a line

L̄ intersects three circles. Then, from the previous lemmas, both L and L̄ must be

from the set of finite candidate lines intersecting the first two circles described in the

previous lemma with the fixed length ratios. Let L and L̄ intersect the third circle atvi
ui

 and

v̄i
ūi

, i ∈ {5, 6} respectively. Further, for i ∈ {4, 5}, suppose

li =

∥∥∥∥∥∥∥∥
vi+1

ui+1

−
vi
ui


∥∥∥∥∥∥∥∥ , l̄i =

∥∥∥∥∥∥∥∥
v̄i+1

ūi+1

−
v̄i
ūi


∥∥∥∥∥∥∥∥ .

as shown in Figure 2. For each L̄ from the (finite) candidate set, the slope and

intercept (ki, bi) are given. To satisfy the additional length ratios, if the line intersects

the third circle,

l4
l1

=
l̄4
l̄1
,
l5
l1

=
l̄5
l̄1

(3.10)

the center of the third circle (x3, y3) cannot be arbitrary but must satisfy the above

fixed ratios (3.10). By the exact arguments as in the previous lemma, one can show

that this results in a finite order polynomial equation in one of the unknowns x3 or y3.

Again by the fundamental theorem of algebra that a finite order non-constant single

variable polynomial equation has finite solutions [33], there are only a finite number

of solutions x3 for each candidate L̄ line. Therefore, for given first two centers and
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the length ratios, there are only a finite number of the third centers that would allow

a line L̄ to have the same length ratios as the line L. Generically placed sensors will

preclude the third center from coinciding exactly with these finitely many isolated

points. This completes the proof.

Unsurprisingly, the above results can be extended if the line L intersects more

than 3 circles with known length ratios.

3.3.2.1 Algorithm for tracking with unknown constant speed s

To apply Algorithm 5.1 in the previous section, estimates of the unknown

speed s and the chord length di have to be calculated. Since the speed s is unknown,

we may replace
√
r2 − d2

i by

√
r2 − d̂2

i (ŝ) where ŝ is an estimate of s and the d̂i(ŝ)

are the estimates of di,

d̂i =
τi2 − τi1

2
ŝ

Clearly, if ŝ = s, one of four solutions from
x1 y1 1

x2 y2 1

x3 y3 1




α

β

γ

 =


±
√
r2 − d̂2

1

±
√
r2 − d̂2

2

±
√
r2 − d̂2

3

 (3.11)

satisfies α2(ŝ) + β2(ŝ) = 1. However, there is a fundamental difference between the

cases of known and unknown speed. In the case of known speed, the length ratios

li/l1 do not play any role in ensuring the uniqueness of the line while in the unknown

speed case, these ratios are necessary. These ratios can be divided into two types,

the chord ratios τi2−τi1
τ12−τ11 , and the outer length ratios

τ(i+1)1−τi2
τ12−τ11 . The chord ratios are
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taken care of automatically in (3.11) because d̂i
d̂1

=
τ(i+1)1−τi2
τ12−τ11 . So the algorithm has to

account for the outer length ratios. The algorithm can now be summarized as follows.

Algorithm 3.2 Detection algorithm for unknown speed:

Step 0: Calculate l̄i
l̄1

= li
l1

as defined in (3.9).

Step 1: Apply Algorithm 5.1 but replacing (3.6) and (3.7) by

minŝ>0(α2(ŝ) + β2(ŝ)− 1)2

s.t.


x1 y1 1

x2 y2 1

x3 y3 1




α

β

γ

 =


±
√
r2 − d̂2

1

±
√
r2 − d̂2

2

±
√
r2 − d̂2

3


(3.12)

l2i
l1

=
l̄2i
l̄1
, i = 2, 4 (3.13)

and

d̂i(ŝ) =
(τi2 − τi1)ŝ

2
, i = 1, 2, 3. (3.14)

By the previous analysis, the line αx+βy+γ = 0 can be uniquely determined

for generic sensor placements.

3.3.3 Uncertainty in the sensing range

So far, we have assumed that the sensing range of binary sensors are all exactly

r. In practice because of calibration uncertainties, device-to-device variations, system

noise due to Poisson nature of received signals and measurement noise, the sensing
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range r is only approximately known.We now show how this can be accommodated

in our approach.

Assumption 3.3.1. The sensing range of the i-th sensor is

ri = r + ∆i, |∆i| ≤ ∆ < r

where the ∆i are iid random variables distributed in −∆ ≤ ∆i ≤ ∆ for some ∆ ≥ 0.

Assume ∆ = αr depending on the quality of the sensors. For example, ∆ =

0.1r which implies the uncertainty level 2∆ is about 20% of the nominal value r. Now,

let us reconsider (3.12). Clearly, if the sensing range r is accurate and s is available,

for generic sensor locations, only one solution of

A3


α

β

γ

 = e3

i.e. 
α̂

β̂

γ̂

 = (AT3A3)−1AT3 e3

would satisfy α̂2 +β̂2 = 1 obeyed by the line. With uncertainty, this is no longer valid.

Since the actual radius ri = r + ∆i is unknown, the resultant chord length d̂i could

be larger than the assumed radius r or equivalently

√
r2 − d̂2

i could be a complex

number. In such a case, the equation in solving (α, β, γ) is rendered meaningless.

Thus in the presence of uncertainty, not every sensor provides useful information.
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To this end, we only use data from the i-th sensor if r − ∆ > d̂i which guarantees

(r + ∆i)
2 − d̂2

i > 0. Define

Am =



x1 y1 1

x2 y2 1

...
...

...

xm ym 1


(3.15)

êm(ŝ,∆i) =



±
√
r2 − d̂2

1

±
√
r2 − d̂2

2

...

±
√
r2 − d̂2

m


(3.16)

and

r −∆ > d̂i, i = 1, 2, ...,m ≥ 3 (3.17)

Now consider

x1 y1 1

x2 y2 1

...
...

...

xm ym 1




α

β

γ

 =



±
√
r2 − d̂2

1

±
√
r2 − d̂2

2

...

±
√
r2 − d̂2

m


⇒ (3.18)
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Am


α

β

γ

 =



±
√

(r + ∆1)2 − d̂2
1

±
√

(r + ∆2)2 − d̂2
2

...

±
√

(r + ∆i)2 − d̂2
m


︸ ︷︷ ︸

em(ŝ,∆i)

+



±
√
r2 − d̂2

1

±
√
r2 − d̂2

2

...

±
√
r2 − d̂2

m


−



±
√

(r + ∆1)2 − d̂2
1

±
√

(r + ∆2)2 − d̂2
2

...

±
√

(r + ∆i)2 − d̂2
m


︸ ︷︷ ︸

∆em(ŝ,∆i)

(3.19)

Obviously, the first part

Am


α

β

γ

 = em(ŝ,∆i) (3.20)

is the relevant equation if the uncertainties ∆i were available and the solution
ᾱ

β̄

γ̄

 = (ATmAm)−1ATmem(ŝ,∆i)

leads to the line ᾱx+β̄y+γ̄ = 0 provided that ᾱ2+β̄2 = 1 and the length ratios li
l1

= l̄i
l̄1

are satisfied as in (3.12). The problem is that the ∆i are unknown. To study the

effect of the uncertainty ∆em(ŝ,∆i), note that under the assumption that r−∆ > d̂i,



www.manaraa.com

76

it is easily verified that

√
r2 − d̂2

i −
√

(r + ∆i)2 − d̂2
i = −∆i(1+ 1

2
( d̂i
r

)2)+h.o.t. where

h.o.t. refers to higher order terms in ∆i. Obviously, if we consider the dominant

term, i.e., the first order term, the effect of the uncertainty

(ATmAm)−1ATm


−∆1(1 + 1

2
( d̂1
r

)2)

...

−∆m(1 + 1
2
( d̂m
r

)2)


goes to zero as m increases provided that only the good information r − ∆ > d̂i’s,

i = 1, 2, ...,m are used and ∆i are zero mean. To summarize, we have

Theorem 3.8. Suppose the conditions of Theorem 3.5 hold except that the circles

have radii r + ∆i. With the various quantities defined as above, suppose


ᾱ

β̄

γ̄

 is

the true solution and


α̂

β̂

γ̂

 denote the estimate generated by the algorithm outlined

above. Then the following hold.

• Assume r − ∆ > d̂i, i = 1, 2, ...,m and ∆i is iid of zero mean. Then as m
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increases 
ᾱ

β̄

γ̄

−

α̂

β̂

γ̂

 = (ATmAm)−1ATm×


−∆1(1 + 1

2
( d̂1
r

)2)

...

−∆m(1 + 1
2
( d̂m
r

)2)

+ h.o.t.

→ h.o.t.

• Further if the center coordinates xi and yi are iid uniformly distributed of zero

mean, then as m increases
ᾱ

β̄

γ̄

−

α̂

β̂

γ̂

→


0

0

h.o.t.


Proof. The first part is a direct consequence of the discussion preceding the theorem

statement. To show the second part, note

(ATmAm)−1ATm → diag

{
1

σ2
x

,
1

σ2
y

, 1

}
×

1

m


x1 x2 · · · xm

y1 y2 · · · ym

1 1 · · · 1

∆em(ŝ,∆i)

where σ2
x and σ2

y are the variances of xi and yi. The conclusion follows from the fact

that xi and yi are iid and zero mean. This completes the proof.
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3.3.4 Asymptotic results for sensor density required for tracking

Figure 3.4: General representation of a line through a disc of radius R

We now address the following question: Should the trajectory be a single

straight line passing through D, does its estimation require a high density of sensors

in D? We will show in this section that a high density is unnecessary, and that in

fact vanishingly small densities also suffice. It is evident from the previous sections

that should a line intersect the sensing ranges of three generically placed sensors, then

it can be uniquely determined from the time stamps delineating entrance into and

departure from these sensing ranges.

Thus we ask the following related question. Suppose the coverage area of the
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sensor network D is large compared to the sensing range of a sensor. Specifically

suppose D ⊂ R2 is a large disk with radius R � r. Asymptotically, what sensor

density guarantees that this line intersects the sensing region of at least one of the

sensors? Asymptotically, this density will be of the same order as that guaranteeing

intersection with the sensing ranges of at least three sensors. We observe that the

results we present extend readily to D that is rectangular or has other shapes.

We choose the origin and the coordinate axes so that the center of the disk D

is at (R, 0) as shown in Fig. 3.4. Consider a line passing through the origin with an

angle θ with respect to the horizontal axis, L(θ). Note that because of the circular

symmetry of the problem, there is no loss of generality in our choice of line L(θ) to

represent the trajectory of the object to be tracked.

Let the sensing range of the binary sensor i be a circle of radius r centered

at (xi, yi) uniformly distributed in D. Let N be the number of the binary sensors

in D and P (N,R, r, L(θ)) be the probability that the line L(θ) does not intersect

any small circle of radius r in D. The probability is with respect to the uniform

distribution defining sensor locations. What we are interested is the asymptotic

dependence of P (N,R, r, L(θ)) on R. As will be evident in the sequel this allows

us to draw conclusions about sensor densities.

Theorem 3.9. Let the centers (xi, yi) be i.i.d uniformly distributed in

D =
{
z ∈ R2

∣∣ ∥∥z − [R, 0]>
∥∥ ≤ R

}
.

Define L(θ) to be the line passing through the origin, making an angle θ with the
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x-axis. Assume θ ∈ (−π/2, π/2) and

R

r
= c1N

1−δ (3.21)

for some c1 > 0 and 0 < δ < 1. Then,

lim
N→∞

P (N,R, r, L(θ)) = 0.

Proof. The chord length of the line L(θ) for θ ∈ (−π/2, π/2) is d = 2Rcos(θ). Define

the circle centered at the origin with radius d. Make an arc of the arc length r
2

along

the circle toward the positive horizonal axis as shown in Fig. 4. The angle η and the

area of the small fan-like sector in Fig. 4 are

η =
r

2

1

2πd
2π =

1

4cos(θ)

r

R
,

A(θ, η) =
η

2π
πd2 =

cos(θ)

2
rR

respectively. Clearly, if any of the N sensors is placed in the fan-like sector, the circle

intersects the line L(θ). Because of the uniform distribution and the fact that the

fan-like sector is completely inside the big disk, the probability that the center of the

ith small circle (xi, yi), 1 ≤ i ≤ N , is in the fan-like sector is the ratio of the areas of

the fan-like sector and the big disk

cos(θ)

2
rR

1

πR2
=
cos(θ)

2π

r

R
= c2

r

R

So the probability that none of the centers of N small circles lies in the fan-like sector
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is for some c3, and any x ≤ c3N
δ

P (N,R, r, L(θ)) ≤
(

1− c2
r

R

)N
=

(
1− c3

N δ

N

)N
≤
(

1− x

N

)N
.

As

lim
N→∞

(
1− x

N

)N
= e−x,

and x > 0 can be arbitrarily large as N →∞, it follows that

lim
N→∞

P (N,R, r, L(θ)) = 0.

The following corollary that addresses the simultaneous intersection with m

sensing ranges, follows easily.

Corollary 3.3.1. Let m be any fixed positive number and Pm(N,R, r, L(θ)) the prob-

ability that the line L(θ) does not intersect m or more small circles. Then, under the

conditions of Theorem 3.9,

lim
N→∞

Pm(N,R, r, L(θ)) = 0.

Let us now address the implication of theorem 3.9 and corollary 3.3.1 to the

density of measurement sensors. Suppose δ in Theorem 3.9 is less than 0.5. Then the

sensor density

ρ =
N

πR2
= O

(
1

N1−2δ

)
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declines to zero asN goes to infinity. Thus the probability that a line L(θ) intersects at

least one sensors sensing range approaches one even with vanishingly small densities.

Some other remarks are in order

Remark 3.1. The following remarks are intuitive.

• At first blush the problem we are considering appears to be related to the disk

covering problem for finding the least number of small circles of radius r for

covering a disk of radius R. For small enough r, the least number N of sensors

whose sensing ranges collectively cover D, satisfies [34]

Nπr2

πR2
=

2π

3
√

3
.

According to this the total area covered by the sensors Nπr2 has to be larger

than the area of the big disk πR2 by a factor of 2π
3
√

3
. This result effectively

demands that the sensing ranges be overlapping. By contrast our results do

not require any such overlap, see e.g. Theorem 3.9. In fact suppose again that

0 < δ < 0.5. Then

Nπr2

πR2
=

1

c2
1

· 1

N1−2δ

approaches zero as N approaches infinity. Thus, sensing ranges do not have to

cover D and in fact the ratio of the total area covered by the N sensors and the

area of D can approach zero.

• Again almost all results in the binary sensor literature assume a very high

density of sensors so that the whole area is completely covered by binary sensors.

With a very high density, every point in the region lies in the sensing range of
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several sensors. The object position and trajectory can be pinned down with

a higher degree of accuracy because the intersection is much smaller than the

sensing area of any single sensor. Clearly, a higher density implies that more

sensing ranges overlap resulting in a smaller area of intersection and thus a

more accurate estimate. In fact, as shown in [14] the estimation accuracy is in

the order of 1/ρr. The estimation error goes to zero only when ρ→∞. If the

density ρ→ 0, the estimation error goes to infinity. By contrast in our method,

ρ does not have to go to infinity to have an accurate estimate and can in fact

be vanishingly small.

3.3.4.1 Simulation results

1. We first consider the case with no uncertainty in r. Let D ∈ R2 be rectangular

of dimension 20 meters by 20 meters centered at the origin. The sensing radius

of the binary sensors is r = 1 meter. 35 sensors are uniformly distributed in D.

Note the area covered by the sensors is about 27% of the total area of D and

so the density is not very high and in fact 73% of the area is not covered. The

unknown path of the object consists of 4 line segments with 4 different unknown

speeds s1 = 0.72, s2 = 1.31, s3 = 10.6 and s4 = 0.96 (meter/second) in each

segment as shown in Figure 3.5. The unknown paths are shown in bold lines

and smaller black line is the estimate of the path by applying the algorithm in

(3.12) based on three circles. Clearly, the unknown path is accurately estimated

even if it changes the direction and speed a number of times.
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speed=4.17m/s

speed=6.94m/s

speed=11.11m/s

speed=2.78m/s

Nominal radius r
Estimated trajectory

Figure 3.5: Noise-free tracking

2. We consider the case with 30% uncertainty in r. Using the same settings as in 1

above, the unknown paths are shown in bold lines and smaller black line is the

estimate of the path by applying the algorithm in (3.12) based on four circles.

Clearly, the unknown path estimated is close to the true path even if it changes

the direction and speed a number of times as shown in Figure 3.6.

3. We consider the case where there is noise in the sensing range. The sensing

range of the ith sensor therefore becomes r + ∆i,∆i ∼ U [−∆,∆]. We then use

differing number of sensors to do the estimation of the parameters of the line.

For the simulation described below the nominal sensing radius r=100m, the

region D ∈ R2 containing the sensors is a 2km by 2km square grid centered at

the origin. The centers of the sensors are iid uniformly in D. We consider three

cases of ∆ ∈ { 5r
100
, 10r

100
, 15r

100
}. The density of the sensors used in all simulations is
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speed=4.17m/s

speed=6.94m/s

speed=11.11m/s

speed=2.78m/s

Nominal radius r
Actual radius r+∆

i

Estimated trajectory

Figure 3.6: Tracking with 30% uncertainty in sensing radius

422
20002

= 1.055e−4 sensors/m2. 1000 Monte Carlo simulations are done for each

noise level in the sensing radius r.

Figure 3.7 depicts the line to be estimated with corresponding intersecting sen-

sors, Figure 3.8 depicts the RMSE using 2

√
1

tf−t0

∫ tf
t0

(x(t)− x̂(t))2 + (y(t)− ŷ(t))2dt

, whiles Figure 3.9 depicts the NMSE using (α−α̂)2+(β−β̂)2+(γ−γ̂)2

α2+β2+γ2
.

For k sensors, there are 2n−1 distinct solutions. In the noisy scenario, thus

ri = r + ∆i, the solution will not exactly satisfy α2 + β2 = 1. The simulations

therefore employ a two stage selection criteria.

In the first stage, lines which satisfy 1 − ε ≤ α2 + β2 ≤ 1 + ε, 0 ≤ ε < 1, are

chosen. If only one line is returned, then that is the solution. If m ≥ 2 solution

are returned, the m solutions are used in stage two. If no solution is returned
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Figure 3.7: Line to be estimated

from stage 1, all the possible solutions are used in stage 2. In the simulations,

ε = 0.1 for all noise levels.

In the second stage, the lines which passed stage one are tested using the criteria

(1− λ)‖α2 + β2 − 1‖+ λ(‖l2 − l̂2, l4 − l̂4, ..., l2n−2 − l̂2n−2‖). In the simulations,

λ = 0.5 for all noise levels.

3.4 Tracking of radioactive sources with unknown nominal sensing

range r

In section 3.3 we considered the problem of tracking radioactive sources on

piece-wise linear trajectories with the nominal sensing radii of the measurement sen-
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Figure 3.8: RMSE against k, number of sensors

sors known. We now relax that assumption, and now assume that even though the

nominal sensing radii r is constant and homogeneous across the measurement sensors,

the value of r is however unknown a priori. We develop a robust algorithm which

localizes the trajectory of the radioactive source.

Suppose that a source moves on a linear trajectory L : y = ax + b in the

cartesian coordinate with unknown constant speed s. Suppose L interesects four

binary sensors of unknown detecting sensing radii r with on and off intersecting time

stamps τ2i−1 and τ2i respectively ∀i ∈ {1, 2, 3, 4}. The within sensor chord lengths
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Figure 3.9: Parameter NMSE against k, number of sensors

l2i−1 = s(τ2i−τ2i−1) = s∆τ2i−1 and between sensor lengths l2i = s(τ2i+1−τ2i) = s∆τ2i

are thus available.

Given that L intersects with a sensor ,Si, centered at (mi, ni), then the x-

coordinates of the points of intersection are

x =
mi − a(b− ni)±

√
(1 + a2)r2 − (ami + b− ni)2

1 + a2
(3.22)

From (3.22), the chord lengths and between sensor lengths on the four sensors,li =
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Figure 3.10: Four sensors intersecting a line.

s∆τi, i ∈ {1, 2, ..., 7},are therefore given by

li = 2

√
r2 −

(
am i+1

2
+b−n i+1

2

)2

1+a2
, i ∈ {1, 3, 5, 7} (3.23)

and

li =
m i

2+1
−m i

2
+a

(
n i

2+1
−n i

2

)
√

1+a2
−

√
r2 −

(
am i

2+1
+b−n i

2+1

)2

1+a2
−

√
r2 −

(
am i

2
+b−n i

2

)2

1+a2
,

i ∈ {2, 4, 6}
(3.24)

3.4.1 Determination of unique trajectory using four sensors with s and r unknown

3.4.1.1 Within sensor measurements

Using the four chord lengths from (3.23) and normalizing by l1 provides three

equations thus

∆τ 2
2i−1

∆τ 2
1

=
r2 − (ami+b−ni)2

1+a2

r2 − (am1+b−n1)2

1+a2

, i ∈ {2, 3, 4} ⇒

r2 =
∆τ22i−1

∆τ22i−1−∆τ21

(am1+b−n1)2

1+a2
− ∆τ21

∆τ22i−1−∆τ21

(ami+b−ni)2
1+a2

(3.25)
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where i ∈ {2, 3, 4},∆τ2i−1 6= ∆τ1

The three resulting equations from (3.25) can then be used to eliminate r by

choosing pairs of two. This gives three new equations devoid of r thus;(
∆τ 2

2i−1

∆τ 2
2i−1 −∆τ 2

1

−
∆τ 2

2j−1

∆τ 2
2j−1 −∆τ 2

1

)
(am1 + b− n1)2−

∆τ 2
1 (ami + b− ni)2

∆τ 2
2i−1 −∆τ 2

1

+
∆τ 2

1 (amj + b− nj)2

∆τ 2
2j−1 −∆τ 2

1

= 0

(3.26)

where {i 6= j} ∈ {2, 3, 4},∆τ2i−1 6= ∆τ1,∆τ2j−1 6= ∆τ1

3.4.1.2 Between sensor measurements

From (3.24), we can form 3 equations using the between sensor measurements

normalized by the preceding chord length to remove the unknown speed s.

∆τ2i
∆τ2i−1

=
mi+1−mi+a(ni+1−ni)−

√
(1+a2)r2−(ami+1+b−ni+1)2

2
√

(1+a2)r2−(ami+b−ni)2
− 1

2
(3.27)

where i ∈ {1, 2, 3}.

We further eliminate r using (3.28) by leveraging the within sensor chord

lengths.

r2 =
∆τ22i+1(ami+b−ni)2−∆τ22i−1(ami+1+b−ni+1)2

(∆τ22i+1−∆τ22i−1)(1+a2)
(3.28)

where i ∈ {1, 2, 3} and ∆τ2i−1 6= ∆τ2i+1. Substituting (3.28) in (3.27) and rearranging

terms leads to three new equations in (3.29) devoid of s and r.

(ami+b−ni)2−(ami+1+b−ni+1)2

∆τ22i+1−∆τ22i−1
− (mi+1−mi+a(ni+1−ni))2

(2∆τ2i+∆τ2i−1+∆τ2i+1)2
= 0 (3.29)

where i ∈ {1, 2, 3} and ∆τ2i−1 6= ∆τ2i+1.
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3.4.1.3 Finding unique trajectory

Theorem 3.10. Suppose an object moves on a straight line L : y = ax + b, with

unknown constant speed s and intersects with four sensors whose centers (mi, ni), i ∈

{1, 2, 3, 4} are i.i.d uniformly distributed and all sensors have unknown range r. Sup-

pose the “on” an “off” intersecting time-stamps τ2i−1 and τ2i are known, then with

probability being one L is uniquely determined.

Proof. Using the first three sensors, three equations can be realized. Define ∆τi =

τi+1 − τi. Then the three resulting equations are as shown in (3.30)-(3.32).

(
∆τ23

∆τ23−∆τ21
− ∆τ25

∆τ25−∆τ21

)
(am1 + b− n1)2 − ∆τ21 (am2+b−n2)2

∆τ23−∆τ21
+

∆τ21 (am3+b−n3)2

∆τ25−∆τ21
= 0

(3.30)

(2∆τ2+∆τ1+∆τ3)2

∆τ23−∆τ21
((am1 + b− n1)2 − (am2 + b− n2)2) = (m2 −m1 + a(n2 − n1))2

(3.31)

(2∆τ4+∆τ3+∆τ5)2

∆τ25−∆τ23
((am2 + b− n2)2 − (am3 + b− n3)2) = (m3 −m2 + a(n3 − n2))2.

(3.32)

Without loss of generality assume m1 = n1 = n2 = 0. This can be achieved by

rotation and translation of the centers in the Cartesian plane. We however retain all

variables to preserve clarity. The following Lemmas, 3.11 and 3.12, will be required

to continue the proof of Theorem 3.10.

Lemma 3.11. Suppose an object moves in a straight line L : y = ax + b, with

constant speed s and intersects with four sensors whose centers (mi, ni), i ∈ {1, 2, 3, 4}
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are i.i.d uniformly, and all sensors have sensing range r. Suppose the “on” an “off”

intersecting time-stamps τ2i−1 and τ2i are known such that the within sensor transition

times are ∆τ2i−1 = τ2i− τ2i−1, i ∈ {1, 2, 3, 4}. Then with probability one the transition

times ∆τ2i−1 −∆τ2j−1 6= 0, i 6= j, i, j ∈ {1, 2, 3, 4}.

Proof. Without loss of generality, assume the line L is coincident with the horizontal

axis and the first sensor is centered at (0, n1). This is easily attained by rotation

and translation. With this assumption, n1 = ±
√
r2 − s2 ∆τ21

4
. For ∆τ1 = ∆τ3 the

second sensor has to have its center on a line y = ±
√
r2 − s2 ∆τ21

4
which is two 1-

dimensional manifolds in a 2-dimensional space. Since the centers are i.i.d uniformly,

the probability that the second sensor lies on any of these two 1-dimensional manifolds

is zero. See Figure 3.11 for illustration. The argument holds for any two pairs of

sensors i and j, i 6= j, i, j ∈ {1, 2, 3, 4}. This completes the proof.

Figure 3.11: Illustration for Lemma 3.12.
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Lemma 3.12. Suppose an object moves on a straight line L : y = ax + b, with

unknown constant speed s and intersects with three sensors whose centers (0, 0), (0, n2)

and (m3, n3), {n2,m3, n3} /∈ {0}, and all sensors have unknown range r. Suppose the

“on” an “off” intersecting timestamps τ2i−1 and τ2i are known, then with probability

one only finite number of lines could satisfy (3.30)-(3.32).

Proof. From Lemma 3.11, with probability one, (3.30)-(3.32) can be realized if L

intersects 3 sensors. Taking (3.30) produces;(
∆τ23

∆τ23−∆τ21
− ∆τ25

∆τ25−∆τ21

)
b2

∆τ21
= (b−n2)2

∆τ23−∆τ21
+ (am3+b−n3)2

∆τ25−∆τ21(
2n2

∆τ23−∆τ21
+ 2(am3−n3)

∆τ25−∆τ21

)
b =

n2
2

∆τ23−∆τ21
+ (am3−n3)2

∆τ25−∆τ21
.

⇒ b =
n2

2(∆τ 2
5 −∆τ 2

1 )− (am3 − n3)2(∆τ 2
3 −∆τ 2

1 )

2n2(∆τ 2
5 −∆τ 2

1 ) + 2(am3 − n3)(∆τ 2
3 −∆τ 2

1 )
(3.33)

Similarly, taking (3.31) produces;

(2∆τ2+∆τ1+∆τ3)2

∆τ23−∆τ21
(b2 − (b− n2)2)− (an2)2 = 0

(2∆τ2+∆τ1+∆τ3)2

∆τ23−∆τ21
(2b− n2)− a2n2 = 0.

⇒ b =
a2n2

2

∆τ 2
3 −∆τ 2

1

(2∆τ2 + ∆τ1 + ∆τ3)2
+
n2

2
. (3.34)

Solving (3.33) and (3.34) results in

a3 (∆τ23−∆τ21 )

(2∆τ2+∆τ1+∆τ3)2
+ a2

(
n2(∆τ25−∆τ21 )−n3(∆τ23−∆τ21 )

m3(2∆τ2+∆τ1+∆τ3)2
+ m3

n2

)
−a = 0. (3.35)

Notice that (3.35) is a polynomial equation in a and has finite number of

solutions by the fundamental theorem of algebra [33]. Consequently, b also has finite

number of solutions resulting in a finite pairing of {a, b}. This concludes the proof.
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Remark 3.2. We note that (3.35) is cubic in “a” even though (3.33) and (3.34) are

quadratic. This is because any line L and 3 sensor placement that accepts 3 other

lines L̂ will have two of the feasible lines being parallel. Rotating and translating the

first two senors to (0, 0) and (0, n2) will ensure that those two lines have a = 0.

We now continue the proof of Theorem 3.10. Suppose that line L̂ satisfies

(3.30)- (3.32) using three sensors then L̂, as well as L must be from the finite set

of lines described in Lemma 3.11. With a fourth sensor, L̂ and L must satisfy both

(3.30)-(3.32) as well as (3.36)-(3.38) below:

(
∆τ23

∆τ23−∆τ21
− ∆τ27

∆τ27−∆τ21

)
(am1 + b− n1)2 − ∆τ21 (am2+b−n2)2

∆τ23−∆τ21
+

∆τ21 (am4+b−n4)2

∆τ27−∆τ21
= 0

(3.36)(
∆τ25

∆τ25−∆τ21
− ∆τ27

∆τ27−∆τ21

)
(am1 + b− n1)2 − ∆τ21 (am3+b−n3)2

∆τ25−∆τ21
+

∆τ21 (am4+b−n4)2

∆τ27−∆τ21
= 0

(3.37)

(2∆τ6+∆τ5+∆τ7)2

∆τ27−∆τ25
((am3 + b− n3)2 − (am4 + b− n4)2) = (m4 −m3 + a(n4 − n3))2.

(3.38)

With three sensors resulting in a finite number of candidate lines with proba-

bility one, the center of the fourth circle (m4, n4) cannot be arbitrary. By the exact

argument used in Lemma 3.11, one can show that this results in a finite order poly-

nomial equation in either m4 or n4. Hence by the fundamental theorem of algebra

[33], this results in finite number of pairs (m4, n4) for each candidate line L̂. There-

fore, for any given three centers and resultant equations from (3.30)-(3.32), there are

finite number fourth sensor centers that would result in L̂ having the same resultant
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equations from (3.36)-(3.38). With the centers of the four sensors i.i.d uniformly, the

probability of one of these finite set of centers being the center of the fourth circle is

zero. This concludes the proof of Theorem 3.10.

3.4.2 Algorithm with s and r unknown

With four sensors, the full set of realizable equations devoid of s and r is as

shown in (3.39) and (3.40) below.

gi,j(a, b) = αi,j(am1 + b− n1)2 − βi,j(am2 + b− n2)2 + γi,j(am3 + b− n3)2 (3.39)

where gi,j(a, b) = 0∀{i, j} ∈ {2, 3, 4},

i 6= j, i < j,

αi,j =
∆τ2i

∆τ2i −∆τ21
− ∆τ2j

∆τ2j −∆τ21
, βi,j =

∆τ21
∆τ2i −∆τ21

, and γi,j =
∆τ21

∆τ2j −∆τ21

hk(a, b) = δk((amk + b− nk)2 − (amk+1 + b− nk+1)2)− (mk+1 −mk + a(nk+1 − nk))2

(3.40)

where k ∈ {1, 2, 3}, and δk = (2∆τ2k+∆τ2k−1+∆τ2k+1)2

∆τ22k+1−∆τ22k−1
.

We propose a Newton based least squares iterative search algorithm for deter-

mination of X = [a, b]T . Define the function J , a 6× 1 vector, as

J = [g2,3(a, b), g2,4(a, b), g3,4(a, b), h1(a, b), h2(a, b), h3(a, b)]T (3.41)

where gi,j(a, b) and hk(a, b) are as defined in (3.39) and (3.40) respectively. Also define

the derivative of J as J̇ , a 6× 2 matrix as

J̇ =

[
∂J

∂a
,
∂J

∂b

]
. (3.42)
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Then we propose the descent law

X[k] = X[k − 1]−
[
J̇T
∣∣
X[k−1]

J̇
∣∣
X[k−1]

]−1

J̇T
∣∣
X[k−1]

J
∣∣
X[k−1]

(3.43)

where T denotes transpose. Of course this algorithm stems from the first order Taylor

series expansion of J
∣∣
X[k]

= J
∣∣
X[k−1]

+ J̇
∣∣
X[k−1]

(X[k]−X[k−1])+h.o.t. For X[k] close

to X[k − 1] the h.o.t ≈ 0.This leads to a requirement of the initial estimate being

close to the solution. We deal with this by setting X[0] as the gradient and intercept

from least squares line fit to the centers {mi, ni}, i ∈ {1, 2, 3, 4}. From Theorem

3.10, we know with probability 1, there exist 1 real root close to X[0], guaranteeing

convergence of the algorithm to the solution. The pseudo-code of our algorithm is

summarized in Algorithm 6.1.

Algorithm 3.3 Newton based least squares iterative search algorithm:

1. X[0]←


4
∑4
i=1mini−

∑4
i=1mi

∑4
i=1 ni∑4

i=1m
2
i−(

∑4
i=1mi)

2

4
∑4
i=1m

2
i

∑4
i=1 ni−

∑4
i=1mi

∑4
i=1mini∑4

i=1m
2
i−(

∑4
i=1mi)

2


2. X[1]← X[0]−

[
J̇T
∣∣
X[0]

J̇
∣∣
X[0]

]−1

J̇T
∣∣
X[0]

J
∣∣
X[0]

3. k ← 2

4. while ‖X[k]−X[k − 1]‖ ≥ tol and k ≤ kmax

X[k]← X[k − 1]−
[
J̇T
∣∣
X[k−1]

J̇
∣∣
X[k−1]

]−1

J̇T
∣∣
X[k−1]

J
∣∣
X[k−1]

k ← k + 1

end
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We model the effects of the background noise and measurement noise as ∆r,

an uncertainty in the sensing range. Thus the sensing range of sensor i becomes

ri = r + ∆i, where ∆i ∼ U [−∆r,∆r].

3.4.3 Simulation results

Simulations were performed on a piecewise linear trajectory with different

unknown constant speeds on each line segment. The nominal radius r and the speed

s are unknown. Figure 3.12 shows simulation with ∆r = 0 whilst Figure 3.13 shows

simulations with ∆r = 0.15r.

speed=4.17m/s

speed=6.94m/s

speed=11.11m/sspeed=2.78m/s

Nominal radius r
Actual radius r+∆

i

Estimated trajectory

Figure 3.12: Trajectory with no uncertainty in r.
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speed=4.17m/s

speed=6.94m/s

speed=11.11m/sspeed=2.78m/s

Nominal radius r
Actual radius r+∆

i

Estimated trajectory

Figure 3.13: Trajectory with ∆r = 0.15r.

Figure 3.14 shows the results of 5000 Monte Carlo simulations for ∆r ∈

[0.01r, 0.15r].

3.5 Conclusion

We have considered tracking of radioactive sources using binary proximity

sensors with two general assumptions. The first assumption is that the source moves

on a piecewise linear trajectory. The second assumption is that over each section of

the piecewise linear trajectory, the source moves with a constant speed. We show

that under these two general assumptions, the nonlinear source tracking problem can
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Figure 3.14: 5000 Monte Carlo simulations for ∆r ∈ [0.01r, 0.15r]

be converted into a linear parameter estimation problem if the nominal sensing range

is known. We show that using three sensor measurements of “on” and “off” time

stamps, the trajectory can be uniquely determined with probability 1. Simulations

demonstrate robustness of our algorithm. We also show a newton based least squares

iterative descent tracking of radioactive sources for the case where the nominal sensing

range is unknown but homogeneous among the measurement sensors. Finally we show

that using four sensor measurements of “on” and “off” time-stamps, the trajectory
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can be uniquely determined with probability 1. Simulations demonstrate robustness.
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CHAPTER 4
PERFORMANCE BOUNDS ON ESTIMATION ACCURACY OF
RADIOACTIVE SOURCES USING IDEAL MOBILE SENSORS

The technical challenges of estimating radioactive sources have already been

motivated in Chapter 1. Even beyond these challenges, a theoretical limitation arises

from the fact that the radiation from a radioactive source is a fundamentally prob-

abilistic physical process, resulting in an irreducible amount of randomness and un-

certainty associated with its measurements. Radiation comprises discrete emissions

of particles, and likewise detection of radiation fundamentally consists of a sequence

of events involving the absorption of discrete particles. These emission and detection

events are modeled statistically as Poisson arrival processes [35, 36].

While the variability of radiation measurements because of this random Pois-

son statistics is well-known and routinely taken into account in the literature [3] on

radioactive source detection and estimation, the effect of this randomness has never

been studied separately from other uncertainties like background radiation and mod-

eling errors. While the latter effects are often larger in real-world radiation source

detection and estimation applications, the variability of the Poisson process itself can

have non-negligible effects, especially with weak sources, inexpensive detectors and

fast-moving sources and/or detectors [4] that may limit observation intervals to be

short. Indeed, to our knowledge, the only previous work to study the effect of the

randomness in the radiation source detection and estimation process separately is [37]

which looks at the probability of detection error and false alarm resulting from the
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randomness of the emissions.

We examine the theoretical limits on the achievable accuracy of estimation of

radioactive sources imposed by the inherent randomness of gamma particle emission

and detection process itself, even in the absence of any other external impairments

in the detection or estimation process such as measurement errors, background noise,

modeling uncertainties and so on. This study is intended as a step towards a better

understanding of the effect of this randomness. In addition, our theoretical limits

with ideal sensors represent upper bounds on the performance achievable with any

real-world detector, and provide important benchmarks for practical detection and

estimation.

4.1 Problem formulation

We consider first the general problem of estimating the trajectory of a moving

radioactive source using the measurements of a mobile, ideal detector. We then

specialize to a stationary source and a detector moving in a straight line with uniform

speed and a simple square-law signal strength model. While much of our analysis can

be extended to the more general problem, we focus on these special cases as they

admit elegant closed form expressions that are revealing and insightful. We consider

an infinite horizon arrival process generalizable to a finite time horizon case.

4.1.1 The ideal nuclear detector

We define an ideal detector as a device that records the time of arrival of every

particle absorbed by its detection hardware. We ignore possible limits on the timing



www.manaraa.com

103

accuracy of such a detector due to the quantum energy-time uncertainty principle

[38].

This ideal device is of course strictly superior to any practical radiation detec-

tor in the sense that the observations of any practical device can be represented as

a (possibly noisy) function of the measurements of the ideal sensor. For instance, a

detector that uses average arrival rates for signal strength measurements can equiva-

lently be represented as averaging inter-arrival times from an ideal sensor. Similarly,

a practical sensor that detects particle counts over a set of finite observation intervals

can be represented as a device that quantizes an ideal sensor’s time-stamp measure-

ments. Designs for practical sensors with detection time bins as short as 150 ms have

been reported [39]. As detection intervals become shorter, such practical detectors

can approach the performance of an ideal sensor.

4.1.2 General problem statement

Consider a radioactive source moving along a trajectory

zθ(t) ≡ [xθ(t), yθ(t)] (4.1)

parameterized by an arbitrary set of unknown variables θ, and a detector moving

along the known trajectory z(t). The distance of the detector from the source at time

t is

d(t) = ‖zθ(t)− z(t)‖ (4.2)

where ‖ · ‖ denotes the 2-norm representing the usual Euclidean distance.

In the sequel, we assume that the mean arrival rate of gamma particles from
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the source depend only on the distance from the source. In other words, we do

not consider directional detectors such as CZT Compton scattering devices [40] and

limit ourselves to scintillation-type devices [41] and isotropic media. However, our

analysis is not limited to this case, and can be easily extended. Accordingly, in our

formulation, particles from the source are absorbed by the detector at discrete times

representing an instance of an inhomogeneous Poisson process [42] with the mean

arrival rate

λ(t) = f(d(t)) (4.3)

where f(d(t)) is a decreasing function of distance representing the attenuation of the

source strength over space.

The general problem of radioactive source estimation can be stated as the

problem of finding the source strength and trajectory by estimating the set of un-

known parameters θ, given a (possibly countably infinite) set of observed arrival times

τm,m ∈ {1, · · · , n} at the ideal detector over some (possibly infinite) observation in-

terval (T1, T2). This problem is readily generalized to a network of many sensors.

4.1.3 Special case: Stationary source with uniform speed mobile detector on a

straight line

As stated earlier, we mostly focus on a special case of the problem in 4.1.2. In

this special case, the source is stationary at an unknown location

zθ(t) = [x0, y0] (4.4)
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Figure 4.1: Ideal detector moving on a straight line with constant speed.

and the detector is moving with a constant speed s on a straight line that

without loss of generality can be taken to be the abscissa of the Cartesian plane.

Furthermore, we choose our coordinates so that the detector’s position at time t = 0

is chosen as the origin. Then the detector’s trajectory is

L : z(t) = [st, 0] (4.5)

and the corresponding distance from the source is

d(t) =
√
y2

0 + (x0 − st)2 (4.6)

As observations are from a detector confined to a line, to remove the flip

ambiguity in localization this engenders, we assume that y0 > 0.

In this special case, we also assume that the signal attenuation follows a simple

inverse square law

f(d(t)) =
A

d2(t)
(4.7)
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which gives for the mean arrival rate at the detector

λ(t) =
A

y2
0 + (x0 − st)2

, (4.8)

where A is a source strength parameter that depends on the type, shape and total

volume of the nuclear source as well as the detector characteristics.This setup is

depicted in Figure 4.1.

The unknown parameters for this case consists of the triplet

θ = [A, x0, y0]T (4.9)

The total number of arrival times recorded by an ideal detector is a Poisson random

variable N with mean equal to the area under the curve generated by λ(t) = f(d(t)),

which turns out to be finite even for an infinite time horizon for the inverse-square

law attenuation model in (4.8):

E
[
N
]

=

∫ ∞
−∞

A

y2
0 + (x0 − st)2

dt =
πA

sy0

(4.10)

The nuclear source localization problem in this special case, is then the prob-

lem of estimating the triplet θ = [A, x0, y0] given a set of measured time-stamps

representing the arrivals of radiation particles τm,m ∈ {1, · · · , n} over the infinite

time horizon t ∈ (−∞,∞). One realization of the random arrival process is shown in

Fig. 4.2.
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Figure 4.2: One instance of the Poisson arrival process at the ideal detector.

4.2 Maximum likelihood estimation of nuclear source location and

strength

We now derive the likelihood function for the general estimation problem pre-

sented in Section 4.1.2. We will then specialize this likelihood function for the special

case in Section 4.1.3 and derive the maximum likelihood solution.

4.2.1 Likelihood function

Let τ ≡ [τ1, τ2, . . . , τn] represent the vector with the observations at the

detector i.e. the time-stamps. Assume that the time-stamps are sorted so that

τ1 < τ2 < τ3 . . . < τn. The likelihood function is simply the joint conditional density

of τ given the parameters θ, i.e.

l(θ) = fτ |θ(τ |θ) (4.11)
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We will now use well-known properties of Poisson processes [42] to derive a general

expression for the corresponding log-likelihood function L(θ) = log (l(θ)). We start

by dividing the time-line into short intervals Ik = {t ∈ (tk, tk+1 = tk + ∆t]}, k ∈

(−∞,∞) each of duration ∆t as shown in Fig. 4.3. Let λk be the mean arrival rate

in Ik:

λk =
1

∆t

∫ tk+1

tk

λ(t)dt (4.12)

Then, the expected number of arrivals in Ik is nk = λk∆t. Note that (4.12) implies

lim∆t→0 λk = λ(tk). The probability of receiving m arrivals in the interval Ik follows

the Poisson distribution: p(m) =
nmk e

−nk

m!
. Assuming that ∆t is chosen small enough,

each of the intervals Ik contain either m = 0 or m = 1 arrivals. Furthermore, the

number of arrivals in each interval are all independent random variables. Let ni denote

the interval which contains the i’th arrival τi i.e. τi ∈ Ini . Let N denote the set of

intervals in which m = 1 arrivals occurred i.e. N = {k : ∃i such that ni = k}. Let

N c be the complementary set of intervals in which m = 0 arrivals occurred. Finally,

note that (4.12) implies lim∆t→0 λni = λ(τi). We then have for the likelihood function

l(θ) = fτ |θ(τ |θ) =
∏
k∈N

λk∆te
−λk∆t

∏
k∈N c

e−λk∆t (4.13)

= (∆t)N

(∏
k∈N

λk

)(
e−

∑∞
k=−∞ λk∆t

)
(4.14)

Noting that (∆t)N does not depend on the unknown parameters θ, and taking

limits as ∆t → 0 on the remaining terms, we can now write down a modified log-
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Figure 4.3: Illustration of arrival times over infinite time horizon.

likelihood function

L(θ) = −
∫ ∞
−∞

λ(t)dt+
n∑
i=1

log (λ(τi)) (4.15)

Specializing (4.15) to the case of Section 4.1.3 gives:

L(A, x0, y0) = − πA
sy0

+ n logA−
∑n

i=1 log (y2
0 + (x0 − sτi)2) (4.16)

For the finite time horizon, (4.16) generalizes to:

L(A, x0, y0) = − A
sy0
κ(T1, T2, x0, y0) + n logA−

∑n
i=1 log (y2

0 + (x0 − sτi)2) (4.17)

where κ(T1, T2, x0, y0) = arctan(x0−sT1
y0

)− arctan(x0−sT2
y0

).

4.2.2 The maximum likelihood estimate

For a given set of observations by the detector τi, the maximum likelihood

estimates are defined as [Â, x̂s, ŷs] = arg maxA,x0,y0 L(A, x0, y0).

Proposition 1. The log-likelihood function in (4.16) has a unique critical

point and this point is the global maximum for L(A, x0, y0).

Define the set of n functions αi(x, y), i = 1 . . . n as:

αi(x, y) =
1

y2 + (x− sτi)2
(4.18)
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Differentiating L(A, x0, y0) with respect to A, x0, y0 and equating to zero

immediately gives for the ML estimates:

Â =
nsŷ

κ(T1, T2, x̂, ŷ)

n∑
i=1

αi(x̂, ŷ)
(
x̂− sτi

)
=
nŷ
(

1
ŷ2−(x̂−sT2)2

− 1
ŷ2−(x̂−sT1)2

)
2κ(T1, T2, x̂, ŷ)

n∑
i=1

αi(x̂, ŷ) =
n

2ŷ2
−
n
(

x̂−sT2
ŷ2−(x̂−sT2)2

− x̂−sT1
ŷ2−(x̂−sT1)2

)
2ŷκ(T1, T2, x̂, ŷ)

(4.19)

(4.19) generalizes for the infinite horizon case to:

Â =
nsŷ

π
,

n∑
i=1

αi(x̂, ŷ)
(
x̂− sτi

)
= 0,

n∑
i=1

αi(x̂, ŷ) =
n

2ŷ2
(4.20)

Equation (4.20) provides an explicit expression for Â, and a pair of equations

that implicitly determine x̂, ŷ. Now given constant a, define

Q(y)
.
= y2

n∑
i=1

αi(a, y)− n

2
≡

n∑
i=1

y2

y2 + (a− sτi)2
− n

2
(4.21)

Clearly, Q(0) = −n
2
, and limy→∞Q(y) = n

2
. Since Q(y) is a strictly monotonic

function of y for y > 0, it follows then that there is a unique positive solution to

Q(y) = 0. Let us denote this solution y = f1(a).

Proposition 2. The sequence y[m] defined by the recursion y[m + 1] =√
n

2
∑n
i=1 αi(a,y[m])

converges to f1(a).

Proof. From (4.20) define Q(x,y)
.
= y2

∑n
i=1 αi(x, y)− n

2
.

∂Q(x,y)
∂y2

=
n∑
i=1

αi(x, y)− y2
n∑
i=1

α2
i (x, y) =

n∑
i=1

(x− sτi)2α2
i (x, y) > 0.(4.22)

Q(x, y) is a strictly increasing function of y2. Q(0, x) = −n
2

and Q(∞, x) = n
2
.

Therefore, for a fixed value of x there is a unique y > 0 such that Q(x, y) = 0.
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Comparing (4.21) with (4.20), we see that the ML solution satisfies ŷ = f1(x̂).

Thus Proposition 2 provides a simple recursive procedure to calculate ŷ given an

estimate of x̂. Now define

f2(x)
.
=

∑n
i=1 sτiαi

(
x, f1(x)

)∑n
i=1 αi

(
x, f1(x)

) (4.23)

Comparing (4.23) with (4.20), we see that x̂−f2(x̂) = 0. We finally have the following

proposition.

Proposition 3. The sequence x[m] defined by the recursion x[m + 1] =

f2

(
x[m]

)
converges to x̂.

Propositions 3 and 2 along with the expression for Â in (4.20) provide a com-

plete numerical procedure to calculate the maximum likelihood solution to our local-

ization problem.

4.3 Cramer-Rao bound

Finally, recalling that y0 > 0 we derive the Cramer-Rao lower bounds (crlb)

for θ = {A, x0, y0}. From (4.15) and (4.16),

∂L(A, x0, y0)

∂θ
=


−κ(T1,T2,x0,y0)

sy
+ n

A

A
s

(
1

y20+(x0−sT2)2
− 1

y20+(x0−sT1)2

)
− 2

n∑
i=1

αi(x0, y0)(x0 − sτi)

πA
sy20
− 2

n∑
i=1

αi(x0, y0)y0


(4.24)

Define

zi = x0 − sτi, (4.25)
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Algorithm 4.1 Algorithm for finding ML estimate

Initialize Algorithm:

[1] αi(x̂[0], ŷ[0])[0] ← 1
n

[2] x̂[0] ← 1
n

∑n
i=1 sτi

[3] ŷ2
[0] ←

n
2

Iterate till convergence:

while

∥∥∥∥∥∥∥∥
x̂[k] − x̂[k−1]

ŷ2
[k] − ŷ2

[k−1]

∥∥∥∥∥∥∥∥ < Tolerance

[4] αi(x̂[k], ŷ[k])[k+1] ← 1

ŷ2
[k]

+(x̂[k]−sτi)
2

[5] x̂[k+1] ←
s
∑n
i=1 αi(x̂[k],ŷ[k])[k+1]τi∑n
i=1 αi(x̂[k],ŷ[k])[k+1]

[6] ŷ2
[k+1] ←

n
2
∑n
i=1 αi(x̂[k],ŷ[k])[k+1]

[7] k ← k + 1

end
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α(T1,T2) =
1

y2
0 + (x0 − sT2)2

− 1

y2
0 + (x0 − sT1)2

, (4.26)

β(T1,T2) =
x0 − sT2

y2
0 + (x0 − sT2)2

− x0 − sT1

y2
0 + (x0 − sT1)2

, (4.27)

γ(T1,T2) =
x0 − sT2

(y2
0 + (x0 − sT2)2)2

− x0 − sT1

(y2
0 + (x0 − sT1)2)2

. (4.28)

and

ψ(T1,T2) =
1

(y2
0 + (x0 − sT2)2)2

− 1

(y2
0 + (x0 − sT1)2)2

. (4.29)

Then the Hessian matrix of the log likelihood function is:


− n
A2

α(T1,T2)
s

κ(T1,T2,x0,y0)

sy2
−
β(T1,T2)
sy0

α(T1,T2)
s

−2
n∑
i=1

α2
i (x, y)(y

2 − z2i )−
2Aγ(T1,T2)

s
4
n∑
i=1

α2
i (x, y)yzi −

2Ay0ψ(T1,T2)
s

κ(T1,T2,x0,y0)

sy2
−
β(T1,T2)
sy0

4
n∑
i=1

α2
i (x, y)yzi −

2Ay0ψ(T1,T2)
s

η(3,3)

 (4.30)

where η(3,3) = −2Aκ(T1,T2,x0,y0)

sy30
+2

n∑
i=1

α2
i (x, y)(y2−z2

i )+ A
s

(
(1 + 1

y20
)β(T1,T2) + 2γ(T1,T2)

)
The corresponding Fisher information matrix from from (4.30) is:

FIM =


κ(T1,T2,x0,y0)

sy0A
−
α(T1,T2)

s
−κ(T1,T2,x0,y0)

sy2
+
β(T1,T2)
sy0

−
α(T1,T2)

s
Aκ(T1,T2,x0,y0)

2sy30

+
2Aγ(T1,T2)

s

(2A−1)y0ψ(T1,T2)
s

−κ(T1,T2,x0,y0)

sy2
+
β(T1,T2)
sy0

(2A−1)y0ψ(T1,T2)
s

η̂(3,3)

 (4.31)

where η̂(3,3) = 3Aκ(T1,T2,x0,y0)

2sy30
− 2A

s

(
β(T1,T2)
y20

+ γ(T1,T2)

)
. For the infinite time horizon

case, (4.31) reduces to:

FIM =


π

sy0A
0 − π

sy20

0 πA
2sy30

0

− π
sy20

0 3πA
2sy30

 (4.32)

with a corresponding inverse of:

FIM−1 =


3sy0A
π

0
2sy20
π

0
2sy30
πA

0

2sy20
π

0
2sy30
πA

 . (4.33)
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Consequently, the crlb for {A, x, y} are
{

3sy0A
π
,

2sy30
πA

,
2sy30
πA

}
respectively.

The Cramer-Rao bounds in (4.33) for the infinite time horizon have some in-

teresting properties, some of which are intuitively obvious, while others are somewhat

surprising. First note that the bounds are completely independent of x0 and increase

with y0. This is because the shortest distance of approach between the source and

the line on which the detector moves is y0, independent of x0. The square law ensures

that a shorter distance provides more accurate localization. Likewise, whilst it is

intuitively unsurprising that a slower moving detector or stronger source each lead to

improved localization accuracy, the bounds in (4.33) allow us to make this intuition

more precise: Estimation accuracy improves with a larger A/s. In fact a higher value

of s has the same effect on the estimation of all quantities, the Fisher Information

Matrix being inversely proportional to s. Finally, the fact that the bounds on the

variance of x0 and y0 are identical is a mild surprise as there is no obvious symmetry

between the two coordinates. In fact the symmetry is lost for the finite horizon case.

4.4 Simulation results

We now present some numerical results where we compare the ML estimate

with the Cramer-Rao bounds. The Poisson process in (4.8) is simulated using stan-

dard methods [43],[42] with the source location zθ = [0, 500]T m and the detector

speed s = 20ms−1. The mean squared error estimation error of the ML estimate is

calculated for different values of Aπ/(sy0); s is kept constant while varying A. The

results averaged over 10000 independent independent realizations of the Poisson ar-
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rival process is shown in Fig. 4.7. Similar results are obtained if we vary the other

parameters s and x0, y0 as predicted by (4.33). The main takeaway from these simu-

lations is that the variance of the ML estimate quickly converges to the CRLB when

the expected number of arrivals exceeds 50 or so.
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Figure 4.4: Heat map showing algorithm goes to the ML estimate.



www.manaraa.com

116

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

k, the number of iterations for
∫
∞

−∞

A

d2(t)dt = 471.24

N
M

S
E

Figure 4.5: Convergence rate of algorithm.

4.5 Conclusion

In this Chapter, we have made a start towards exploring the fundamental

limits on the achievable accuracy of localizing nuclear sources because of the inherent

randomness of nuclear emission and detection processes. While we considered the

special case of a stationary source and an ideal detector moving in a straight line with

uniform speed under an inverse square law attenuation model, the analysis can be

extended and generalized to tracking moving sources using a network of detectors and

taking into account shielding materials as well as practical detector characteristics.
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CHAPTER 5
CONCLUSION AND FUTURE RESEARCH

In this thesis, we have presented research which has resulted in novel ap-

proaches to the problem of estimation and tracking of radioactive sources under some

general conditions that are much more robust than earlier methods in low signal-to-

noise ratio regimes. Specifically, we have first considered estimation of radioactive

sources with and without knowledge of the expectation of the source signal strength.

Our focus has been on using the minimum number of sensors and on conditions to

ensure uniqueness and robustness of our algorithms. second, we have considered

tracking of radioactive sources under the general assumption that the motion is well

approximated with piece-wise linear joins. Under this assumption, we have come up

with the minimum number of cheap sensors required to localize each linear trajectory

and characterized the robustness of our algorithms. Finally we have looked at the

fundamental limits of localization accuracy using a mobile ideal sensor moving on a

straight line.

The main challenge for radioactive material detection and estimation is in the

fact that the measured signal typically has a large amount of background noise. It is

also necessary to achieve coverage over a large area with a limited number of sensors,

cheap or otherwise. Further, this problem is characterized by uncertainty and lack

of prior knowledge of the signal propagation characteristics. In the model of (2.2),

the two parameters , A and α, corresponding to the source strength and the signal

absorption in the medium are usually both subject to a great deal of uncertainty.
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While it may be reasonable under certain conditions to assume knowledge of the

statistics of the background radiation w, and possibly an estimate of the absorption

coefficient α based on the building density in urban areas for instance, the source

strength can vary over a very wide range depending on the type, size and composition

of the material and it is difficult to have any reliable prior knowledge of it.

With all this in mind, we have developed algorithms under general conditions

which are robust to signal uncertainties and noise. We have not however solved all

the research questions that arise from detection, estimation, localizing and tracking

of radioactive sources.

5.1 Open problems

We enumerate some open problems that are logical extensions to this thesis.

1. Estimation of multiple sources of gamma radiation sources

Our results on estimation of radiation sources have centered on a single point

radiation source. Suppose there are multiple radioactive sources in RN , N being

the dimension of space, can we robustly localize any or all the sources? In

particular, suppose we have n ≥ 1 sensors with the measurement at the ith

sensor, i ∈ {1, · · · , n} given as

Si ∼ Poisson

(
M∑
m=1

Ame
−αdim

d2
im

+ wi

)
(5.1)

where M ≥ 1 is the total number of point radiation sources, Am is the the signal

strength from the mth source at unit distance and zero attenuation coefficient
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and no NORM as background, α is the attenuation coefficient due to the chan-

nel, wi is the NORM background noise at the ith sensor and dim is the 2-norm

defined as

dim = ‖xi − ym‖ (5.2)

with xi ∈ RN and ym ∈ RN being the locations of the ith sensor and the mth

source respectively. There are two questions that arise: (1) How do we know the

number of sources from the sensor measurements? (2) What is the minimum

value of n to localize all M sources in RN?

2. Tracking of a source on a piece-wise parabolic trajectory

In Chapter 3, a general assumption was made that piece-wise linear joins is

a good approximation for the source trajectory. However, could we do better

than piece-wise linear joins without unnecessarily complicating the problem?

The answer is yes. Piece-wise parabolic joins will be a better approximation

than piece-wise linear joins.

Specifically, consider that a radioactive source moves on a parabolic trajectory

P : y = ax2 + bx + c in RN , where N is the dimension of the search space.

Suppose the source moves with a constant speed s and suppose the trajectory

of the source intersects n binary sensors of detecting sensing radii r with on and

off intersecting time stamps τi1 and τi2 respectively ∀i ∈ {1, 2, 3, ..., n}. There

are two questions that arise: (1) Can we uniquely determine P? (2) What is

the lower bound on n?
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lection in binary heterogeneous sensor networks. Signal Processing, IEEE Trans-
actions on, 57(4):1577–1587, 2009.

[21] Q. Le and L. M. Kaplan. Target localization using proximity binary sensors. In
Aerospace Conference, 2010 IEEE, pages 1–8. IEEE, 2010.



www.manaraa.com

124

[22] K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha. Cooperative tracking with
binary-detection sensor networks. In Proceedings of the 1st international confer-
ence on Embedded networked sensor systems, pages 332–333. ACM, 2003.

[23] P. M. Djuric, M. Vemula, and M. F. Bugallo. Target tracking by particle filtering
in binary sensor networks. Signal Processing, IEEE Transactions on, 56(6):2229–
2238, 2008.

[24] T. Nguyen, D. Nguyen, H. Liu, and D. A. Tran. Stochastic binary sensor networks
for noisy environments. International Journal of Sensor Networks, 2(5):414–427,
2007.

[25] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking multiple
targets using binary proximity sensors. In Proceedings of the 6th international
conference on Information processing in sensor networks, pages 529–538. ACM,
2007.

[26] B. Fidan, S. Dasgupta, and B. D. O. Anderson. Guaranteeing practical conver-
gence in algorithms for sensor and source localization. Signal Processing, IEEE
Transactions on, 56(9):4458–4469, 2008.

[27] A. H. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless location:
challenges faced in developing techniques for accurate wireless location informa-
tion. Signal Processing Magazine, IEEE, 22(4):24–40, 2005.

[28] S. Dasgupta and C. R. Johnson. Some comments on the behavior of sign-sign
adaptive identifiers. Systems & control letters, 7(2):75–82, 1986.

[29] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, P. V. Kokotovic, R. L. Kosut,
I. M. Y. Mareels, L. Praly, and B. D. Riedle. Stability of adaptive systems:
passivity and averaging analysis. MIT press Cambridge, MA, 1986.

[30] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.l Cayirci. Wireless sensor
networks: a survey. Computer networks, 38(4):393–422, 2002.

[31] N. Patwari and A. O. Hero III. Using proximity and quantized rss for sensor
localization in wireless networks. In Proceedings of the 2nd ACM international
conference on Wireless sensor networks and applications, pages 20–29. ACM,
2003.

[32] R. A. Johnson. Advanced Euclidean geometry: An elementary treatise on the
geometry of the triangle and the circle. Courier Dover Publications, 1960.



www.manaraa.com

125

[33] B. Fine and G. Rosenberger. The fundamental theorem of algebra. Springer,
1997.

[34] R. Kershner. The number of circles covering a set. American Journal of Mathe-
matics, 61(3):665–671, 1939.

[35] Glenn F Knoll. Radiation detection and measurement. John Wiley & Sons, 2010.

[36] Dimitri Mihalas and Barbara Weibel-Mihalas. Foundations of radiation hydro-
dynamics. Courier Dover Publications, 1999.

[37] C.D. Pahlajani, I Poulakakis, and H.G. Tanner. Decision making in sensor net-
works observing poisson processes. In Control Automation (MED), 2013 21st
Mediterranean Conference on, pages 1230–1235, June 2013.

[38] Y Aharonov and D Bohm. Time in the quantum theory and the uncertainty
relation for time and energy. Physical Review, 122(5):1649, 1961.

[39] Daniel E Archer, Brock R Beauchamp, David A Knapp, G Joseph Mauger,
Michael B Mercer, Karl E Nelson, David C Pletcher, Vincent J Riot, and James L
Schek. Adaptable radiation monitoring system and method, June 20 2006. US
Patent 7,064,336.

[40] FP Doty, HB Barber, FL Augustine, JF Butler, BA Apotovsky, ET Young,
and W Hamilton. Pixellated cdznte detector arrays. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 353(1):356–360, 1994.

[41] M Barber, RS Bordoli, RD Sedgwick, and AN Tyler. Fast atom bombardment of
solids as an ion source in mass spectrometry. Nature, 293(5830):270–275, 1981.

[42] Raghu Pasupathy. Generating homogeneous poisson processes. Wiley Encyclo-
pedia of Operations Research and Management Science, 2010.

[43] Robert G Gallager. Stochastic processes: theory for applications. Cambridge
University Press, 2013.


	Novel techniques for estimation and tracking of radioactive sources
	Recommended Citation

	tmp.1438714095.pdf.4RHay

